45 resultados para pipe
em Publishing Network for Geoscientific
Resumo:
Cretaceous lava flows overlie Jurassic to Early Cretaceous oceanic crust in the Nauru Basin of the western equatorial Pacific, but their exact age and origin is controversial. In one model, they are generically related to volcanism forming the Ontong Java Plateau. However, paleomagnetic data from basalts recovered by ocean drilling in the Nauru Basin have been interpreted as recording numerous geomagnetic reversals, suggesting the Nauru Basin basalts are older than the Early Aptian flows on the Ontong Java Plateau, and the correlative volcanism seen in the western equatorial and southwestern Pacific Ocean basin. Here, we examine the magnetic fidelity of the Nauru Basin basalts through rock magnetic and paleomagnetic approaches. We find the magnetic carriers in the lavas are unlike most basaltic units recovered by oceanic drilling in that they are magnetically soft. This quality makes the rocks especially prone to the acquisition of secondary magnetic components induced during drilling. We demonstrate that the reversed polarity intervals are illusory, and instead record subtle changes in magnetic hardness that result in partial and complete overprinting by the magnetic field associated with the drill string (e.g., the core barrel, drill pipe and bit). The recognition of these magnetic overprints, the identification of only normal polarity in the Nauru Basin basalts, and a critical consideration of the available radiometric and biostratigraphic age data lead us to conclude that coeval formation of the Nauru Basin basalts and Ontong Java Plateau in Aptian times remains a viable hypothesis.
Resumo:
Seawater that has been altered by reaction with basaltic basement has been sampled from Deep Sea Drilling Project Hole 504B, located on 5.9-m.y.-old crust on the southern flank of the Costa Rica Rift. Fourteen water samples have been collected on Legs 69, 70, and 83, both before and after renewed drilling on the latter two legs, at temperatures from 69 to 133°C and pressures from 390 to 425 bars. The water sampled prior to renewed drilling on Leg 83 had occupied the hole for nearly 2 yr. since it was last flushed with surface seawater at the end of Leg 70. Despite some contamination by seawater during sampling, the composition of two of these waters has been determined by using nitrate as a tag for the contaminant. Both the 80 and 115°C waters have seawater chlorinity, but have lost considerable Mg, Na, K, sulfate, and 02, and have gained Ca, alkalinity, Si, NH3 and H2S. The loss of sulfate is due to anhydrite precipitation, as indicated by the d34S value of the remaining dissolved sulfate. The 87Sr/86Sr ratio has been lowered to 0.7086 for the 80°C water and 0.7078 for the 115°C water, whereas the Sr concentration is nearly unchanged. The changes in major element composition relative to seawater are also larger for the 115°C water, indicating that the basement formation water at this site probably varies in composition with depth. Based on their direction relative to seawater, the compositional changes for the 80 and 115°C waters do not complement the changes inferred for the altered rocks from Hole 504B, suggesting that the bulk composition of the altered rocks, like their mineralogy, is largely unrelated to the present thermal and alteration regime in the hole. The exact nature of the reacted seawaters cannot be determined yet, however. During its 2 yr. residence in the hole, the surface seawater remaining at the end of Leg 70 would have reacted with the wall rocks and exchanged with their interstitial formation waters by diffusion and possibly convection. How far these processes have proceeded is not yet certain, although calculations suggest that diffusion alone could have largely exchanged the surface seawater for interstitial water. The d18O of the samples is indistinguishable from seawater, however, and the d14C of the 80°C sample is similar to that of ocean bottom water. Although the interpretation of these species is ambiguous, that of tritium should not be. Tritium analyses, which are in progress, should clarify the nature of the reacted seawaters obtained from the hole.
Resumo:
Investigation of the ferromagnetic fraction of sediments from the Brazil Basin and Rio Grande Rise shows that its main constituents are magnetite and hematite. The magnetite is detrital, but the hematite is both detrital and chemical in origin. Magnetite is the main carrier of the natural remanent magnetization (NRM); therefore, the NRM is detrital remanent magnetization (DRM). In a number of cases, the change of magnetic parameters along the stratigraphic column permits some refinement of the previously defined boundaries of the lithologic units.
Resumo:
Innerdalen was once a mountain valley (ca. 780 m a.s.l.) with birch forests, bogs and several summer farms. Today it is a 6.5 km**2 artifical lake. In 1980 and 1981 archaeological and palynological investigations were carried out due to the hydroelectric power plans. Radiocarbon dated pollen diagrams from 9 different localities in Innerdalen provide information on a mountain environment which has been exploited to varying degrees by human groups for thousands of years. In the Birch Zone, ca. 9500-8500 years B.P., the deglaciated surface is vegetated by the normal sequence of pioneering species, first show-bed communities, then shrub/dwarf-shrub communities, and finally a birch forest community. In the Pine Zone, ca. 8500-7500 years B.P., the mixed Birch-Pine forest which prevailed at the end of the Birch Zone is replaced by a dense pine forest. The tree limit was higher than it is today. In the Alder Zone, ca. 7500-4000 years B.P., the newly arrived alder gradually succeeded pine, particularily on good soils. This alder forest has a modem analog in the pre-alpine gray alder forests in Norway. In the last part of the Alder Zone, ca. 6000-4000 years B.P., elm and hazel are nominally present on particularily rich soils, marking the edaphic and climatic optimum in Innerdalen. During this time the first evidence of human impact on the vegetation is apparent in the pollen diagrams. At both Sætersetra in the south of the valley and Liabekken in the north, forest clearance and the development of grazed grass meadows is documented, and human impact continues until the present. The Herb Zone, ca. 4000 years B.P. to 1600 A.D., is characterized by the rapid decline of alder. The forest is increasingly open, and bog formation is initiated. The sub-alpine belt of birch forest is established, probably due to the shift to a cooler, moister climate. Human activity can also have influenced the vegetational changes, although at 4 of the localities human activity also is first apparent after the alder decline. Some localities show measurably less human impact on the vegetation ca. 2600-2000 years B.P. Grazing intensity increases ca. 2000 years B.P. At the end of the Herb Zone rye and barley pollen is registered at Sætersetra and Flonan, indicating contact between the grazing activities of Innerdal and grain cultivation activities outside the valley. The Spruce Zone, ca. 1600 A.D. to the present, does not begin synchronously since the presence of long-distance transported spruce pollen at a locality is entirely dependent on the density of the vegetation ie. degree of human impact. The youngest spruce rise is ca. 1500 A.D. at Røstvangen, when summerfarming is initiated. Summerfarming activities in Innerdal produce an increasingly open landscape. Rye and barley pollen at several localities may indicate limited local cultivation, but is more likely long-distance transport via humans and domesticated animals from cultivated areas outside Innerdalen.
Resumo:
During Ocean Drilling Program (ODP) Leg 178, eight holes were drilled at three sites (1095, 1096, and 1101) on the continental rise along the western Antarctic Peninsula. The rise sediments proved to be good paleomagnetic recorders and provided continuous magnetostratigraphic records at all three sites. Biosiliceous microfossils, particularly diatoms and radiolarians, were present in the upper Miocene through lower Pliocene sections. In the upper Pliocene to Pleistocene sections, biosiliceous microfossils were rare but calcareous nannofossils and foraminifers were present. This paper summarizes the biostratigraphy and magnetostratigraphy of Leg 178 continental rise sites and is the first attempt at direct calibration of Antarctic biostratigraphic events to the geomagnetic polarity timescale in the Pacific sector of the Southern Ocean.
Resumo:
Whole-core (WC) measurements of low-field magnetic susceptibility (MS) provide an extremely simple, rapid, and nondestructive technique for high-resolution core logging and lithostratigraphic correlation between subsidiary holes at Ocean Drilling Program (ODP) sites. This is particularly useful for reconstructing composite, stratigraphically continuous sequences for individual ODP sites by splicing the uninterrupted records obtained from subsections of offset cores recovered from adjacent holes. Correlation between the WCMS profiles of holes drilled at different sites is also possible in some instances, especially when lithologic variations at each site are controlled by regional paleoceanographic or global (i.e., orbitally forced) paleoclimatic changes. In such circumstances, WCMS may also be used as a proxy paleoclimatic indicator, duly assisting climatostratigraphic zonation of the recovered sequence by more conventional microfossil and isotopic techniques. High-resolution WCMS profiles are also useful in detecting intervals of the recovered sequence affected by drilling disturbance, in the form of contamination by pipe rust or similar metallic artifacts as well as discontinuities related to repenetration of the corer or loss of material between successively cored intervals. Stratigraphic intervals that have been affected by early (suboxic) diagenesis resulting from a high initial organic matter content of the sediment are also readily identified by WCMS logging. The MS signal of horizons affected by suboxic diagensis is typically degraded in proportion to the duration and intensity (related to initial Corg concentration) of organic matter remineralization. The lowering of MS values during suboxic diagenesis results from "dissolution" (bacterially mediated ionic dissociation) of magnetic iron and manganese oxides and oxyhydroxides in the sediment. It is to be hoped that, on future ODP (or similar) cruises, WCMS logging will cease to be regarded as a mere adjunct to paleomagnetic measurements, but rather as a simple, yet powerful, lithostratigraphic tool, directly analogous to downhole geophysical logging tools, and complimentary to shipboard techniques for whole-core measurements of physical properties (e.g., P-wave logging, GRAPE, etc.).
Resumo:
The effects of medium term (32 d) hypercapnia on the immune response of Mytilus edulis were investigated in mussels exposed to acidified (using CO2) sea water (pH 7.7, 7.5 or 6.7; control: pH 7.8). Levels of phagocytosis increased significantly during the exposure period, suggesting an immune response induced by the experimental set-up. However, this induced stress response was suppressed when mussels were exposed to acidified sea water. Acidified sea water did not have any significant effects on other immuno-surveillance parameters measured (superoxide anion production, total and differential cell counts). These results suggest that ocean acidification may impact the physiological condition and functionality of the haemocytes and could have a significant effect on cellular signalling pathways, particularly those pathways that rely on specific concentrations of calcium, and so may be disrupted by calcium carbonate shell dissolution.
Resumo:
Over the last decade pockmarks have proven to be important seabed features that provide information about fluid flow on continental margins. Their formation and dynamics are still poorly constrained due to the lack of proper three dimensional imaging of their internal structure. Numerous fluid escape features provide evidence for an active fluid-flow system on the Norwegian margin, specifically in the Nyegga region. In June-July 2006 a high-resolution seismic experiment using Ocean Bottom Seismometers (OBS) was carried out to investigate the detailed 3D structure of a pockmark named G11 in the region. An array of 14 OBS was deployed across the pockmark with 1 m location accuracy. Shots fired from surface towed mini GI guns were also recorded on a near surface hydrophone streamer. Several reflectors of high amplitude and reverse polarity are observed on the profiles indicating the presence of gas. Gas hydrates were recovered with gravity cores from less than a meter below the seafloor during the cruise. Indications of gas at shallow depths in the hydrate stability field show that methane is able to escape through the water-saturated sediments in the chimney without being entirely converted into gas hydrate. An initial 2D raytraced forward model of some of the P wave data along a line running NE-SW across the G11 pockmark shows, a gradual increase in velocity between the seafloor and a gas charged zone lying at ~300 m depth below the seabed. The traveltime fit is improved if the pockmark is underlain by velocities higher than in the surrounding layer corresponding to a pipe which ascends from the gas zone, to where it terminates in the pockmark as seen in the reflection profiles. This could be due to the presence of hydrates or carbonates within the sediments.