14 resultados para physiological stress.

em Publishing Network for Geoscientific


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Acidification of the World's oceans may directly impact reproduction, performance and shell formation of marine calcifying organisms. In addition, since shell production is costly and stress in general draws on an organism's energy budget, shell growth and stability of bivalves should indirectly be affected by environmental stress. The aim of this study was to investigate whether a combination of warming and acidification leads to increased physiological stress (lipofuscin accumulation and mortality) and affects the performance [shell growth, shell breaking force, condition index (Ci)] of young Mytilus edulis and Arctica islandica from the Baltic Sea. We cultured the bivalves in a fully-crossed 2-factorial experimental setup (seawater (sw) pCO2 levels "low", "medium" and "high" for both species, temperature levels 7.5, 10, 16, 20 and 25 °C for M. edulis and 7.5, 10 and 16 °C for A. islandica) for 13 weeks in summer. Mytilus edulis and A. islandica appeared to tolerate wide ranges of sw temperature and pCO2. Lipofuscin accumulation of M. edulis increased with temperature while the Ci decreased, but shell growth of the mussels only sharply decreased while its mortality increased between 20 and 25 °C. In A. islandica, lipofuscin accumulation increased with temperature, whereas the Ci, shell growth and shell breaking force decreased. The pCO2 treatment had only marginal effects on the measured parameters of both bivalve species. Shell growth of both bivalve species was not impaired by under-saturation of the sea water with respect to aragonite and calcite. Furthermore, independently of water temperatures shell breaking force of both species and shell growth of A. islandica remained unaffected by the applied elevated sw pCO2 for several months. Only at the highest temperature (25 °C), growth arrest of M. edulis was recorded at the high sw pCO2 treatment and the Ci of M. edulis was slightly higher at the medium sw pCO2 treatment than at the low and high sw pCO2 treatments. The only effect of elevated sw pCO2 on A. islandica was an increase in lipofuscin accumulation at the high sw pCO2 treatment compared to the medium sw pCO2 treatment. Our results show that, despite this robustness, growth of both M. edulis and A. islandica can be reduced if sw temperatures remain high for several weeks in summer. As large body size constitutes an escape from crab and sea star predation, this can make bivalves presumably more vulnerable to predation with possible negative consequences on population growth. In M. edulis, but not in A. islandica, this effect is amplified by elevated sw pCO2. We follow that combined effects of elevated sw pCO2 and ocean warming might cause shifts in future Western Baltic Sea community structures and ecosystem services; however, only if predators or other interacting species do not suffer as strong from these stressors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Extreme winter warming events in the sub-Arctic have caused considerable vegetation damage due to rapid changes in temperature and loss of snow cover. The frequency of extreme weather is expected to increase due to climate change thereby increasing the potential for recurring vegetation damage in Arctic regions. Here we present data on vegetation recovery from one such natural event and multiple experimental simulations in the sub-Arctic using remote sensing, handheld passive proximal sensors and ground surveys. Normalized difference vegetation index (NDVI) recovered fast (2 years), from the 26% decline following one natural extreme winter warming event. Recovery was associated with declines in dead Empetrum nigrum (dominant dwarf shrub) from ground surveys. However, E. nigrum healthy leaf NDVI was also reduced (16%) following this winter warming event in experimental plots (both control and treatments), suggesting that non-obvious plant damage (i.e., physiological stress) had occurred in addition to the dead E. nigrum shoots that was considered responsible for the regional 26% NDVI decline. Plot and leaf level NDVI provided useful additional information that could not be obtained from vegetation surveys and regional remote sensing (MODIS) alone. The major damage of an extreme winter warming event appears to be relatively transitory. However, potential knock-on effects on higher trophic levels (e.g., rodents, reindeer, and bear) could be unpredictable and large. Repeated warming events year after year, which can be expected under winter climate warming, could result in damage that may take much longer to recover.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mass mortalities of Pacific oysters Crassostrea gigas occur regularly when temperatures are high. Elevated temperatures facilitate the proliferation and spread of pathogens and simultaneously impose physiological stress on the host. Additionally, periods of high temperatures coincide with the oyster spawning season. Spawning is energetically costly and can further compromise oyster immunity. Most studies monitoring the underlying factors of oyster summer mortality in the field, point to the involvement of abiotic and biotic factors including low salinities, high temperatures, pollutants, toxic algae blooms, pathogen exposure and physical stress in conjunction with maturation. However, studies addressing more than two factors experi- mentally are missing thus far. Therefore, we investigated the combination of three main factors including abiotic as well as internal and external biotic stressors by conducting controlled infection experiments on pre-and post-spawning as well as on gravid oysters with opportunistic Vibrio sp. at two different tempera- tures. Based on mortality rates, infection intensity and cellular immune parameters, we provide experimental evidence that all three factors (i.e. reproductive investment, elevated temperatures and infection with oppor- tunistic Vibrio sp.) act additively to the phenomenon of oyster summer mortality, leaving post-spawning oyster more susceptible to SMS than pre-spawning and gravid oysters. While previous studies found that post-spawning oysters have a lower thermal tolerance and a reduced ability to withstand pathogen infec- tions, our study now allows to separate the relative contribution of different causative agents to oyster sum- mer mortality and pinpoint to infection with pathogenic Vibrio sp. being of highest importance. In addition we can add a mechanistic understanding for the higher losses after spawning during which the phagocytic ability of hemocytes was strongly impeded resulting in insufficient clearance of pathogens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The worldwide effects of ocean acidification (OA) on marine species are a growing concern. In temperate coastal seas, seaweeds are dominant primary producers that create complex habitats and supply energy to higher trophic levels. Studies on OA and macroalgae have focused on calcifying species and adult stages but, critically, they have overlooked the microscopic stages of the reproductive life cycle, which, for other anthropogenic stress e.g. UV-B radiation, are the most susceptible life-history phase. Also, environmental cues and stressors can cause changes in the sex ratio which has implications for the mating system and recruitment success. Here, we report the effects of pH (7.59-8.50) on meiospore germination and sex determination for the giant kelp, Macrocystis pyrifera (Laminariales), in the presence and absence of additional dissolved inorganic carbon (DIC). Lowered pH (7.59-7.60, using HCl-only) caused a significant reduction in germination, while added DIC had the opposite effect, indicating that increased CO2 at lower pH ameliorates physiological stress. This finding also highlights the importance of appropriate manipulation of seawater carbonate chemistry when testing the effects of ocean acidification on photosynthetic organisms. The proportion of male to female gametophytes did not vary significantly between treatments suggesting that pH was not a primary environmental modulator of sex. Relative to the baseline (pH 8.19), gametophytes were 32% larger under moderate OA (pH 7.86) compared to their size (10% increase) under extreme OA (pH 7.61). This study suggests that metabolically-active cells can compensate for the acidification of seawater. This homeostatic function minimises the negative effects of lower pH (high H+ ions) on cellular activity. The 6-9% reduction in germination success under extreme OA suggests that meiospores of M.pyrifera may be resistant to future ocean acidification.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Rising temperatures and ocean acidification driven by anthropogenic carbon emissions threaten both tropical and temperate corals. However, the synergistic effect of these stressors on coral physiology is still poorly understood, in particular for cold-water corals. This study assessed changes in key physiological parameters (calcification, respiration and ammonium excretion) of the widespread cold-water coral Desmophyllum dianthus maintained for 8 months at two temperatures (ambient 12 °C and elevated 15 °C) and two pCO2 conditions (ambient 390 ppm and elevated 750 ppm). At ambient temperatures no change in instantaneous calcification, respiration or ammonium excretion rates was observed at either pCO2 levels. Conversely, elevated temperature (15 °C) significantly reduced calcification rates, and combined elevated temperature and pCO2 significantly reduced respiration rates. Changes in the ratio of respired oxygen to excreted nitrogen (O:N), which provides information on the main sources of energy being metabolized, indicated a shift from mixed use of protein and carbohydrate/lipid as metabolic substrates under control conditions, to less efficient protein-dominated catabolism under both stressors. Overall, this study shows that the physiology of D. dianthus is more sensitive to thermal than pCO2 stress, and that the predicted combination of rising temperatures and ocean acidification in the coming decades may severely impact this cold-water coral species.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Anthropogenic CO2 emissions have caused seawater temperature elevation and ocean acidification. In view of both phenomena are occurring simultaneously, their combined effects on marine species must be experimentally evaluated. The purpose of this study was to estimate the combined effects of seawater acidification and temperature increase on the energy budget of the thick shell mussel Mytilus coruscus. Juvenile mussels were exposed to six combined treatments with three pH levels (8.1, 7.7 and 7.3) * two temperatures (25 °C and 30 °C) for 14 d. We found that clearance rates (CRs), food absorption efficiencies (AEs), respiration rates (RRs), ammonium excretion rates (ER), scope for growth (SFG) and O:N ratios were significantly reduced by elevated temperature sometimes during the whole experiments. Low pH showed significant negative effects on RR and ER, and significantly increased O:N ratios, but showed almost no effects on CR, AE and SFG of M. coruscus. Nevertheless, their interactive effects were observed in RR, ER and O:N ratios. PCA revealed positive relationships among most physiological indicators, especially between SFG and CR under normal temperatures compared to high temperatures. PCA also showed that the high RR was closely correlated to an increasing ER with increasing pH levels. These results suggest that physiological energetics of juvenile M. coruscus are able to acclimate to CO2 acidification with a little physiological effect, but not increased temperatures. Therefore, the negative effects of a temperature increase could potentially impact the ecophysiological responses of M. coruscus and have significant ecological consequences, mainly in those habitats where this species is dominant in terms of abundance and biomass.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antarctic krill (Euphausia superba) from South Georgia comprise one of the most northern and abundant krill stocks. South Georgia waters are undergoing rapid warming, as a result of climate change, which in turn could alter the oxygen concentration of the water. We investigated gene expression in Antarctic krill related to aerobic metabolism, antioxidant defence, and heat-shock response under severe (2.5% O2 saturation or 0.6 kPa) and threshold (20% O2 saturation or 4 kPa) hypoxia exposure compared to in situ levels (normoxic; 100% O2 saturation or 21 kPa). Biochemical metabolic and oxidative stress indicators complemented the genic expression analysis to detect in vivo signs of stress during the hypoxia treatments. Expression levels of the genes citrate synthase (CS), mitochondrial manganese superoxide dismutase (SODMn-m) and one heat-shock protein isoform (E) were higher in euphausiids incubated 6 h at 20% O2 saturation than in animals exposed to control (normoxic) conditions. All biochemical antioxidant defence parameters remained unchanged among treatments. Levels of lipid peroxidation were raised after 6 h of severe hypoxia. Overall, short-term exposure to hypoxia altered mitochondrial metabolic and antioxidant capacity, but did not induce anaerobic metabolism. Antarctic krill are swarming organisms and may experience short periods of hypoxia when present in dense swarms. A future, warmer Southern ocean, where oxygen saturation levels are decreased, may result in smaller, less dense swarms as they act to avoid greater levels of hypoxia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. Ocean acidification as a result of increased anthropogenic CO2 emissions is occurring in marine and estuarine environments worldwide. The coastal ocean experiences additional daily and seasonal fluctuations in pH that can be lower than projected end of century open ocean pH reductions. Projected and current ocean acidification have wide-ranging effects on many aquatic organisms, however the exact mechanisms of the impacts of ocean acidification on many of these animals remains to be characterized. Methods. In order to assess the impact of ocean acidification on marine invertebrates, Pacific oysters (Crassostrea gigas) were exposed to one of four different pCO2 levels for four weeks: 400 µatm (pH 8.0), 800 µatm (pH 7.7), 1000 µatm (pH 7.6), or 2800 µatm (pH 7.3). At the end of 4 weeks a variety of physiological parameters were measured to assess the impacts of ocean acidification: tissue glycogen content and fatty acid profile, shell micromechanical properties, and response to acute heat shock. To determine the effects of ocean acidification on the underlying molecular physiology of oysters and their stress response, some of the oysters from 400 µatm and 2800 µatm were exposed to an additional mechanical stress and shotgun proteomics were done on oysters from high and low pCO2 and from with and without mechanical stress. Results. At the end of the four week exposure period, oysters in all four pCO2 environments deposited new shell, but growth rate was not different among the treatments. However, micromechanical properties of the new shell were compromised by elevated pCO2. Elevated pCO2 affected neither whole body fatty acid composition, nor glycogen content, nor mortality rate associated with acute heat shock. Shotgun proteomics revealed that several physiological pathways were significantly affected by ocean acidification, including antioxidant response, carbohydrate metabolism, and transcription and translation. Additionally, the proteomic response to a second stress differed with pCO2, with numerous processes significantly affected by mechanical stimulation at high versus low pCO2 (all proteomics data are available in the ProteomeXchange under the identifier PXD000835). Discussion. Oyster physiology is significantly altered by exposure to elevated pCO2, indicating changes in energy resource use. This is especially apparent in the assessment of the effects of pCO2 on the proteomic response to a second stress. The altered stress response illustrates that ocean acidification may impact how oysters respond to other changes in their environment. These data contribute to an integrative view of the effects of ocean acidification on oysters as well as physiological trade-offs during environmental stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As atmospheric levels of CO2 increase, reef-building corals are under greater stress from both increased sea surface temperatures and declining sea water pH. To date, most studies have focused on either coral bleaching due to warming oceans or declining calcification due to decreasing oceanic carbonate ion concentrations. Here, through the use of physiology measurements and cDNA microarrays, we show that changes in pH and ocean chemistry consistent with two scenarios put forward by the Intergovernmental Panel on Climate Change (IPCC) drive major changes in gene expression, respiration, photosynthesis and symbiosis of the coral, Acropora millepora, before affects on biomineralisation are apparent at the phenotype level. Under high CO2 conditions corals at the phenotype level lost over half their Symbiodinium populations, and had a decrease in both photosynthesis and respiration. Changes in gene expression were consistent with metabolic suppression, an increase in oxidative stress, apoptosis and symbiont loss. Other expression patterns demonstrate upregulation of membrane transporters, as well as the regulation of genes involved in membrane cytoskeletal interactions and cytoskeletal remodeling. These widespread changes in gene expression emphasize the need to expand future studies of ocean acidification to include a wider spectrum of cellular processes, many of which may occur before impacts on calcification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied the effects of elevated CO2 concentration and seawater acidity on inorganic carbon acquisition, photoinhibition and photoprotection as well as growth and respiration in the marine diatom Thalassiosira pseudonana. After having grown under the elevated CO2 level (1000 µatm, pH 7.83) at sub-saturating photosynthetically active radiation (PAR, 75 µmol photons/m**2/s) for 20 generations, photosynthesis and dark respiration of the alga increased by 25% (14.69 ± 2.55 fmol C/cell/h) and by 35% (4.42 ± 0.98 fmol O2/cell/h), respectively, compared to that grown under the ambient CO2 level (390 µatm, pH 8.16), leading to insignificant effects on growth (1.09 ± 0.08 (1/d))v 1.04 ± 0.07 (1/d)). The photosynthetic affinity for CO2 was lowered in the high-CO2 grown cells, reflecting a down-regulation of the CO2 concentrating mechanism (CCM). When exposed to an excessively high level of PAR, photochemical and non-photochemical quenching responded similarly in the low- and high-CO2 grown cells, reflecting that photoinhibition was not influenced by the enriched level of CO2. In T. pseudonana, it appeared that the energy saved due to the down-regulated CCM did not contribute to any additional light stress as previously found in another diatom Phaeodactylum tricornutum, indicating differential physiological responses to ocean acidification between these two diatom species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The physiological response to individual and combined stressors of elevated temperature and pCO2 were measured over a 24-day period in four Pacific corals and their respective symbionts (Acropora millepora/Symbiodinium C21a, Pocillopora damicornis/Symbiodinium C1c-d-t, Montipora monasteriata/Symbiodinium C15, and Turbinaria reniformis/Symbiodinium trenchii). Multivariate analyses indicated that elevated temperature played a greater role in altering physiological response, with the greatest degree of change occurring within M. monasteriata and T. reniformis. Algal cellular volume, protein, and lipid content all increased for M. monasteriata. Likewise, S. trenchii volume and protein content in T. reniformis also increased with temperature. Despite decreases in maximal photochemical efficiency, few changes in biochemical composition (i.e. lipids, proteins, and carbohydrates) or cellular volume occurred at high temperature in the two thermally sensitive symbionts C21a and C1c-d-t. Intracellular carbonic anhydrase transcript abundance increased with temperature in A. millepora but not in P. damicornis, possibly reflecting differences in host mitigated carbon supply during thermal stress. Importantly, our results show that the host and symbiont response to climate change differs considerably across species and that greater physiological plasticity in response to elevated temperature may be an important strategy distinguishing thermally tolerant vs. thermally sensitive species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show here that increased variability of temperature and pH synergistically negatively affects the energetics of intertidal zone crabs. Under future climate scenarios, coastal ecosystems are projected to have increased extremes of low tide-associated thermal stress and ocean acidification-associated low pH, the individual or interactive effects of which have yet to be determined. To characterize energetic consequences of exposure to increased variability of pH and temperature, we exposed porcelain crabs, Petrolisthes cinctipes, to conditions that simulated current and future intertidal zone thermal and pH environments. During the daily low tide, specimens were exposed to no, moderate or extreme heating, and during the daily high tide experienced no, moderate or extreme acidification. Respiration rate and cardiac thermal limits were assessed following 2.5 weeks of acclimation. Thermal variation had a larger overall effect than pH variation, though there was an interactive effect between the two environmental drivers. Under the most extreme temperature and pH combination, respiration rate decreased while heat tolerance increased, indicating a smaller overall aerobic energy budget (i.e. a reduced O2 consumption rate) of which a larger portion is devoted to basal maintenance (i.e. greater thermal tolerance indicating induction of the cellular stress response). These results suggest the potential for negative long-term ecological consequences for intertidal ectotherms exposed to increased extremes in pH and temperature due to reduced energy for behavior and reproduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climatic change is an increasing challenge for agriculture that is driving the development of suitable crops in order to ensure supply for both human nutrition and animal feed. In this context, it is increasingly important to understand the biochemical responses of cells to environmental cues at the whole system level, an aim that is being brought closer by advances in high throughput, cost-efficient plant metabolomics. To support molecular breeding activities, we have assessed the economic, technical and statistical feasibility of using direct mass spectrometry methods to evaluate the physiological state of maize (Zea mays L.) plants grown under different stress conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experiments have shown that ocean acidification due to rising atmospheric carbon dioxide concentrations has deleterious effects on the performance of many marine organisms. However, few empirical or modelling studies have addressed the long-term consequences of ocean acidification for marine ecosystems. Here we show that as pH declines from 8.1 to 7.8 (the change expected if atmospheric carbon dioxide concentrations increase from 390 to 750 ppm, consistent with some scenarios for the end of this century) some organisms benefit, but many more lose out. We investigated coral reefs, seagrasses and sediments that are acclimatized to low pH at three cool and shallow volcanic carbon dioxide seeps in Papua New Guinea. At reduced pH, we observed reductions in coral diversity, recruitment and abundances of structurally complex framework builders, and shifts in competitive interactions between taxa. However, coral cover remained constant between pH 8.1 and ~7.8, because massive Porites corals established dominance over structural corals, despite low rates of calcification. Reef development ceased below pH 7.7. Our empirical data from this unique field setting confirm model predictions that ocean acidification, together with temperature stress, will probably lead to severely reduced diversity, structural complexity and resilience of Indo-Pacific coral reefs within this century.