7 resultados para physical characteristic
em Publishing Network for Geoscientific
Resumo:
The sediment record from Rodderberg potentially provides a climate and environmental record spanning at least the last ca 130 ka. Results from a low resolution pilot study reveal characteristic fluctuations that can be related to global climate variability as reflected in marine isotope stages and document the potential of this site for continuous and high-resolution investigations of the Middle to Late Pleistocene. Here we document the tentative lithology drilled, and show how the elemental composition can be interpreted with regard to lake level fluctuations, related redox conditions, but also to grain-size distribution and changes in lacustrine productivity. Finally, based on major lithological changes, a preliminary depth/age model is suggested that allows reassessing published luminescence ages from the same site.
Resumo:
Cryosols are permafrost-affected soils whose genesis is dominated by cryogenic processes, resulting in unique macromorphologies, micromorphologies, thermal characteristics, and physical and chemical properties. In addition, these soils are carbon sinks, storing high amounts of organic carbon collected for thousands of years. In the Canadian soil classification, the Cryosolic Order includes mineral and organic soils that have both cryogenic properties and permafrost within 1 or 2 m of the soil surface. This soil order is divided into Turbic, Static and Organic great groups on the basis of the soil materials (mineral or organic), cryogenic properties and depth to permafrost. The great groups are subdivided into subgroups on the basis of soil development and the resulting diagnostic soil horizons. Cryosols are commonly associated with the presence of ground ice in the subsoil. This causes serious problems when areas containing these soils are used for agriculture and construction projects (such as roads, town sites and airstrips). Therefore, where Cryosols have high ice content, it is especially important either to avoid these activities or to use farming and construction methods that maintain the negative thermal balance.
Resumo:
During leg 1 of Meteor cruise 10 in March/April 1989 at 18°N, 30°W, the high spatial and temporal resolution of hydrographic CTD-stations indicated that the study site was in a hydrographically complex region in the transition zone between the Canary Current and the North Equatorial Current at the southern boundary of the subtropical gyre. Strong variability was found within the upper 120 m due to interleavings of warmer and saltier subtropical salinity maximum water with colder and less saline upper thermocline water. The interleavings caused unexpected nose-like temperature, salinity, nitrate and oxygen profiles yet not described in the literature. A second variability source was found in the Central Water area, because the study area was situated in the vicinity of the Central Water Boundary dividing North and South Atlantic Central Water. Hydrographic analysis of the study shows that interpretations of biological and chemical data can only be done in conjunction with high resolution CTD-profiling.
Resumo:
During Ocean Drilling Program Leg 134 (Vanuatu), geological high sensitivity magnetic tools (GHMT) developed by CEA-LETI and TOTAL were used at two drill sites. GHMT combine two sensors, a proton magnetometer for total magnetic field measurements with an operational accuracy of 0.1 nanoteslas (nT), and a highly sensitive induction tool to measure the magnetic susceptibility with an operational accuracy of a few 10**-6 SI units. Hole 829A was drilled through an accretionary prism and the downhole measurements of susceptibility correlate well with other well-log physical properties. Sharp susceptibility contrasts between chalk and volcanic silt sediment provide complementary data that help define the lithostratigraphic units. At Hole 831B magnetic susceptibility and total field measurements were performed through a 700-m reef carbonate sequence of a guyot deposited on top of an andesitic volcano. The downhole magnetic susceptibility is very low and the amplitude of peak-to-peak anomalies is less than a few 10**-5 SI units. Based on the repeatability of the measurements, the accuracy of the magnetic logging measurements was demonstrated to be excellent. Total magnetic field data at Hole 831B reveal low magnetic anomalies of 0.5 to 5 nT and the measurement of a complete repeat section indicates an accuracy of 0.1 to 0.2 nT. Due to the inclination of the earth's magnetic field in this area (~-40°) and the very low magnetic susceptibility of the carbonate, the contribution of the induced magnetization to the total field measured in the hole is negligible. Unfortunately, because the core recovery was extremely poor (<5%) no detailed comparison between the core measurements and the downhole magnetic data could be made. Most samples have a diamagnetic susceptibility and very low intensity of remanent magnetization (< 10**-4 A/m), but a few samples have a stable remanent magnetization up to 0.005 A/m. These variations of the intensity of the remanent magnetization suggest a very heterogeneous distribution of the magnetization in the carbonate sequence that could explain the magnetic field anomalies measured in these weakly magnetized rocks.
Resumo:
Corvio sandstone is a ~20 m thick unit (Corvio Formation) that appears in the top section of the Frontada Formation (Campoó Group; Lower Cretaceous) located in Northern Spain in the southern margin of the Basque-Cantabrian Basin. Up to 228 plugs were cored from four 0.3 x 0.2 x 0.5 m blocks of Corvio sandstone, to perform a comprehensive characterization of the physical, mineralogical, geomechanical, geophysical and hydrodynamic properties of this geological formation, and the anisotropic assessment of the most relevant parameters. Here we present the first data set obtained on 53 plugs which covers (i) basic physical and chemical properties including density, porosity, specific surface area and elementary analysis (XRF - CHNS); (ii) the curves obtained during unconfined and confined strengths tests, the tensile strengths, the calculated static elastic moduli and the characteristic stress levels describing the brittle behaviour of the rock; (iii) P- and S-wave velocities (and dynamic elastic moduli) and their respective attenuation factors Qp and Qs, electrical resistivity for a wide range of confining stress; and (iv) permeability and transport tracer tests. Furthermore, the geophysical, permeability and transport tests were additionally performed along the three main orthogonal directions of the original blocks, in order to complete a preliminary anisotropic assessment of the Corvio sandstone.
Resumo:
In 2003 and in 2005, hydrographic data provided sufficient spatial coverage in the Labrador Sea to infer basin wide changes in the water mass characteristic of the Upper Labrador Sea Water (ULSW). The ULSW was considerably saltier and warmer in 2005 than in 2003. Although convection in the Labrador Sea leads to mixing with salinity-poor surface water and is opposed to the observed salinity trend, the increased vertical homogeneity of the CTD profiles, the increase in the ULSW thickness and the intensification of the potential vorticity minimum for the isopycnals sigma-theta = 27.700-27.734 kg/m**3 in 2005 point to convection in winter 2005 which ventilated at least about 20% of the Labrador Sea region.