4 resultados para photoelastic modulator

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dust deposition in the Southern Ocean constitutes a critical modulator of past global climate variability, but how it has varied temporally and geographically is underdetermined. Here, we present data sets of glacial-interglacial dust-supply cycles from the largest Southern Ocean sector, the polar South Pacific, indicating three times higher dust deposition during glacial periods than during interglacials for the past million years. Although the most likely dust source for the South Pacific is Australia and New Zealand, the glacial-interglacial pattern and timing of lithogenic sediment deposition is similar to dust records from Antarctica and the South Atlantic dominated by Patagonian sources. These similarities imply large-scale common climate forcings such as latitudinal shifts of the southern westerlies and regionally enhanced glaciogenic dust mobilization in New Zealand and Patagonia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An ensemble of new, high-resolution records of surface ocean hydrography from the Indian-Atlantic oceanic gateway, south of Africa, demonstrates recurrent and high-amplitude salinity oscillations in the Agulhas Leakage area during the penultimate glacial-interglacial cycle. A series of millennial-scale salinification events, indicating strengthened salt leakage into the South Atlantic, appear to correlate with abrupt changes in the North Atlantic climate and Atlantic Meridional Overturning Circulation (AMOC). This interhemispheric coupling, which plausibly involved changes in the Hadley Cell and midlatitude westerlies that impacted the interocean transport at the tip of Africa, suggests that the Agulhas Leakage acted as a source of negative buoyancy for the perturbed AMOC, possibly aiding its return to full strength. Our finding points to the Indian-to-Atlantic salt transport as a potentially important modulator of the AMOC during the abrupt climate changes of the Late Pleistocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The worldwide effects of ocean acidification (OA) on marine species are a growing concern. In temperate coastal seas, seaweeds are dominant primary producers that create complex habitats and supply energy to higher trophic levels. Studies on OA and macroalgae have focused on calcifying species and adult stages but, critically, they have overlooked the microscopic stages of the reproductive life cycle, which, for other anthropogenic stress e.g. UV-B radiation, are the most susceptible life-history phase. Also, environmental cues and stressors can cause changes in the sex ratio which has implications for the mating system and recruitment success. Here, we report the effects of pH (7.59-8.50) on meiospore germination and sex determination for the giant kelp, Macrocystis pyrifera (Laminariales), in the presence and absence of additional dissolved inorganic carbon (DIC). Lowered pH (7.59-7.60, using HCl-only) caused a significant reduction in germination, while added DIC had the opposite effect, indicating that increased CO2 at lower pH ameliorates physiological stress. This finding also highlights the importance of appropriate manipulation of seawater carbonate chemistry when testing the effects of ocean acidification on photosynthetic organisms. The proportion of male to female gametophytes did not vary significantly between treatments suggesting that pH was not a primary environmental modulator of sex. Relative to the baseline (pH 8.19), gametophytes were 32% larger under moderate OA (pH 7.86) compared to their size (10% increase) under extreme OA (pH 7.61). This study suggests that metabolically-active cells can compensate for the acidification of seawater. This homeostatic function minimises the negative effects of lower pH (high H+ ions) on cellular activity. The 6-9% reduction in germination success under extreme OA suggests that meiospores of M.pyrifera may be resistant to future ocean acidification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Salty and warm Indian Ocean waters enter the South Atlantic via the Agulhas leakage, south of Africa. Model simulations and proxy evidence of Agulhas leakage strengthening during glacial terminations led to the hypothesis that it was an important modulator of the Atlantic Ocean circulation. Yet, the fate of the leakage salinity and temperature anomalies remains undocumented beyond the southern tip of Africa. Downstream of the leakage, new paleoceanographic evidence from the central Walvis Ridge (southeast Atlantic) shows that salinity increased at the thermocline, and less so at the surface, during glacial termination II. Thermocline salinity change coincided with higher frequency of Agulhas rings passage at the core location and with salinity maxima in the Agulhas leakage area, suggesting that leakage waters were incorporated in the Atlantic circulation through the thermocline. Hydrographic changes at the Walvis Ridge and in the leakage area display a distinct two-step structure, with a reversal at ca. 134 ka. This matched a wet interlude within the East Asia weak monsoon interval of termination II, and a short-lived North Atlantic warming. Such concurrence points to a Bølling-Allerød-like recovery of the Atlantic circulation amidst termination II, with a northward shift of the Intertropical Convergence Zone and Southern Hemisphere westerlies, and attendant curtailment of the interocean connection south of Africa.