3 resultados para phase diagrams
em Publishing Network for Geoscientific
Resumo:
The age of the subducting Nazca Plate off Chile increases northwards from 0 Ma at the Chile Triple Junction (46°S) to 37 Ma at the latitude of Valparaíso (32°S). Age-related variations in the thermal state of the subducting plate impact on (a) the water influx to the subduction zone, as well as on (b) the volumes of water that are released under the continental forearc or, alternatively, carried beyond the arc. Southern Central Chile is an ideal setting to study this effect, because other factors for the subduction zone water budget appear constant. We determine the water influx by calculating the crustal water uptake and by modeling the upper mantle serpentinization at the outer rise of the Chile Trench. The water release under forearc and arc is determined by coupling FEM thermal models of the subducting plate with stability fields of water-releasing mineral reactions for upper and lower crust and hydrated mantle. Results show that both the influx of water stored in, and the outflux of water released from upper crust, lower crust and mantle vary drastically over segment boundaries. In particular, the oldest and coldest segments carry roughly twice as much water into the subduction zone as the youngest and hottest segments, but their release flux to the forearc is only about one fourth of the latter. This high variability over a subduction zone of < 1500 km length shows that it is insufficient to consider subduction zones as uniform entities in global estimates of subduction zone fluxes. This article is protected by copyright. All rights reserved.
Resumo:
Serpentinized spinel peridotites of the Newfoundland margin drilled during ODP Leg 210 at Site 1277 have preserved, relic mineral compositions similar to the most depleted abyssal peridotites worldwide and different from those of the conjugate Iberian margin. The samples are derived from mass flows containing clasts of peridotite and gabbro and from in-situ basement, and are mostly mylonitic cpx-poor spinel harzburgites with Cr-rich spinels (Cr#0.35-0.66). Melting of the Newfoundland mantle occurred in the spinel peridotite field and probably exceeded the cpx-out phase boundary for some samples. Using proposed spinel peridotite melting models and experimentally derived phase diagrams, the Newfoundland harzburgites can be modeled as a residue after extraction of 14 to 20-25% melting. Basalts that are interleaved with mass flow deposits on top of the peridotite basement resemble normal to transitional mid-ocean ridge basalt. This, together with the unusually high Cr# of some spinel harzburgites suggest that the formation of basalts and partial melting of the underlying peridotite are not cogenetic. Among mantle samples some of the Newfoundland harzburgites approach mineral compositions of the Bay of island ophiolite and ophiolites from Japan that represent peridotites formed in an arc-setting. Thus, the peridotites drilled at Site 1277 may represent inherited (Caledonian or older) subarc mantle that was exhumed close to the ocean floor during the rifting evolution of the Atlantic. Compared to the spinel harzburgites from Newfoundland, the peridotites from the conjugate Iberian margin are, on average, less depleted and provide evidence for local equilibration in the plagioclase stability field. This can either be explained by an inherited, primary, Ca-richer composition of the Iberia peridotite, or, alternatively, by local melt impregnation and stagnation during continental rifting, and thus refertilizing previously depleted (arc-related) peridotite.
Resumo:
One-atmosphere melting experiments, controlled to approximately the fayalite-magnetite-quartz oxygen buffer, performed on a basalt from Hole 797C crystallized olivine and plagioclase nearly simultaneously from about 1235°C and augite from about 1175°C. The liquid compositions indicate systematic trends of increasing FeO and TiO2 and decreasing Al2O3 with decreasing MgO. Experimental olivine compositions vary from Fo90 to Fo78, plagioclase from An79 to An67, and augite from En49 to En46. The KD value for the Fe2+ and Mg distribution between olivine and liquid is 0.31. The KD value for the distribution of Fetotal and Mg between augite and liquid averages 0.24. These KD values suggest experimental equilibrium. The KD values for Na and Ca distribution between plagioclase and liquid range between 0.55 and 0.99 and are dependent on crystallization temperature. Projected on pseudoternary basaltic phase diagrams, the liquid line of descent moves toward increasing quartz normative compositions, revealing a typical tholeiitic crystallization trend with marked Fe and Ti enrichments. Such enrichments are a reflection of the dominance of plagioclase in the crystallizing assemblage. The experimental results can explain the marked Fe- and Ti-enrichment trends observed for the sills of the lower part of Hole 797C, but have no direct bearing on the origin of the relatively evolved high-Al basalts of Hole 794C.