4 resultados para periodic acid Schiff reaction
em Publishing Network for Geoscientific
Resumo:
Several amino acid diagenetic reactions, which take place in the deep-sea sedimentary environment, were investigated, using various Deep Sea Drilling Project (DSDP) cores. Initially it was found that essentially all the amino acids in sediments are bound in peptide linkages; but, with increasing age, the peptide bonds undergo slow hydrolysis that results in an increasingly larger fraction of amino acids in the free state. The hydrolysis half-life in calcareous sediments was estimated to be ~1-2 million years, while in non-carbonate sediment the hydrolysis rate may be considerably slower. The amino acid compositions and the extent of racemization of several amino acids were determined in various fractions isolated from the sediments. These analyses demonstrated that the mechanism, kinetics, and rate of amino acid diagenesis are highly dependent upon the physical state (i.e., free, bound, etc.) in which the amino acids exist in the sedimentary environment. In the free state, serine and threonine were found to decompose primarily by a dehydration reaction, while in the bound state (residue or HCl-insoluble fraction) a reversible aldol-cleavage reaction is the main decomposition pathway of these amino acids. The change in amino acid composition of the residue fraction with time was suggested to be due to the hydrolysis of peptide bonds, while in foraminiferal tests the compositional changes over geological time are the result of various decomposition reactions. Reversible first-order racemization kinetics are not observed for free amino acids in sediments. The explanation for these anomalous kinetics involves a complex reaction series which includes the hydrolysis of peptide bonds and the very rapid racemization of free amino acids. The racemization rates of free amino acids in sediments were found to be many orders of magnitude faster than those predicted from elevated temperature experiments using free amino acids in aqueous solution. The racemization rate enhancement of free amino acids in sediments may be due to the catalysis of the reaction by trace metals. Reversible first-order kinetics are followed for amino acids in the residue fraction isolated from sediments; the rate of racemization in this fraction is slower than that predicted for protein-bound amino acids. Various applications of amino acid diagenetic reactions are discussed. Racemization and the decomposition reaction of serine and threonine can both be used, with certain limitations, to make rough age estimates of deep-sea sediments back to several million years. The extent of racemization in foraminiferal tests which have been dated by some other independent technique can be used to estimate geothermal gradients, and thus heat flows, and to evaluate the bottom water temperature history in certain oceanic areas.
Resumo:
Biogenic calcareous and siliceous sediments were drilled at ODP Sites 689 and 690 on the Maud Rise, Antarctic Ocean. We analyzed dissolved combined amino acids (DCAA) and dissolved free amino acids (DFAA) in interstitial waters in order to characterize the amino acids in dissolved organic matter. The DFAA was predominant over the DCAA in interstitial waters at Sites 689 and 690, which contradicted the previous results from interstitial water and seawater studies. The DCAA in the interstitial waters probably originated from calcareous biogenic debris with less amounts of siliceous debris. Although glutamic acid constituted 41% of the total concentration of DCAA, it accounted for only 1% of the total concentration of DFAA due to the adsorption and/or reaction with biogenic carbonate. Ornithine, a nonprotein amino acid, is a decomposed product of arginine and made up 17 mol% of the total DFAA and. The total hydrolyzable amino acids (=DCAA + DFAA) accounted for 5 to 28% of the dissolved organic carbon (DOC) concentration, which implied that high molecular weight organic matter was a major contributor for the DOM (dissolved organic matter) in interstitial waters. Fairly positive correlation between the dissolved manganese and the total DCAA values suggested that the redox condition plays a significant role in controlling the total DCAA content. A small decrease in the sulfate concentration in the interstitial waters from both sites suggested fairly low microbial activity by sulfate-reducing bacteria.
Resumo:
The absolute configuration of the title acid (2) has been determined to be S by X-ray crystallography. Thus, decarboxylation of 2 produces (S)-(+)-halothane with 99% retention of configuration. This behavior is compared to other stereoselective decarboxylation reactions of ?-haloacids from the literature that also give high degrees of retention of configuration when in the form of their quaternary ammonium salts, which contain one proton. The proton of the ammonium salt is necessary to protonate the anionic intermediate formed from decarboxylation. In the absence of this relatively acidic proton, we had previously found that using triethylene glycol (TEG) as both solvent and proton source for the decarboxylation reaction of acid 2 caused poor stereoselectivity. This was in contrast to 1,2,2,2-tetrafluoro-1-methoxypropionic acid (6), which showed a high degree of retention of configuration in TEG. To rationalize this differing behavior we report DFT studies at PCM-B3LYP/6-31++G** level of theory (the results were additionally confirmed with 6-311++G** and aug-cc-pVDZ basis sets). The energy barrier to inversion of configuration of the anionic reaction intermediate of acid 2 (11) is 10.23 kcal/mol. However, we find that the anionic intermediate from acid 6 (10) would rather undergo ?-elimination instead of inversion of configuration. Thus the planar transition state required for inversion of configuration is never reached, regardless of the rate of proton transfer to the anion.
Resumo:
Kinetic parameters for the epimerization of isoleucine in multispecific foraminiferal asemblages were used to establish the effects of burial depth and the geothermal gradient on the extent of reaction. It was observed that with a little as thirty meters of burial in a normal thermal regime there were differences between the extent of epimerization measured and that which would have been predicted for thermal equilibrium with bottom water temperatures. As would be expected, these differences are greatest when the heat flow (the geothermal gradient) and/or the sedimentation rates are highest. These effects were observed in most of the DSDP samples studied, and have been used to estimate the average heat flux since the time of sample deposition. Occasional anomalous effects were observed which could not be related to past or present heat flux. These were determined to be due to such geologic occurrences as slumping and reworking or to recent sample contamination. Other problems emerged related to bottom water temperatures including changes over geologic time which are unknown and could not be deduced. Thus, the presence of epimerization anomalies in DSDP cores as noted above limits the effectiveness of amino acid geochronology in such cores, unless these anomalies can be recognized as ab initio.