5 resultados para past group identities

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Cenozoic Pagodroma Group in the northern Prince Charles Mountains, East Antarctica, is a glaciomarine succession of fjordal character, comprising four uplifted formations of different ages. The composition of the <2 µm fraction of sediments of the Pagodroma Group was analysed in order to help identify source areas, past weathering conditions and glacial regimes. Both clay and non-clay minerals have been quantified. The assemblage of the upper Oligocene to lower Miocene Mount Johnston Formation is characterised by the dominance of illite and intermediate concentrations of chlorite. Similar to that assemblage is the clay mineral suite of the middle Miocene Fisher Bench Formation, where illite and chlorite together account for 95% of the clay minerals. The middle to upper Miocene Battye Glacier Formation is the only formation with significant and persistent smectite concentrations, although illite is still dominant. The kaolinite concentration is also high and is even higher than that of chlorite. The clay fraction of the upper Pliocene to lower Pleistocene Bardin Bluffs Formation is characterised by maximum kaolinite concentrations and relatively low illite and chlorite concentrations. The bulk of the clay fraction in each formation can be explained by the physical weathering and erosion of a nearby source under glacial conditions. In the case of Mount Johnston Formation and Fisher Bench Formation this source may be situated in the metavolcanic and gneissic rocks of Fisher Massif. The sediments of the Bardin Bluffs Formation indicate a local source within the Amery Oasis, where Proterozoic granitoid rocks and gneisses, and Permo-Triassic fluvial rocks of the Amery Group are exposed. These results suggest a strong local imprint on the glacial sediments as northwards flowing ice eroded the bedrock in these areas. The origin of the clay fraction of the Battye Glacier Formation is a matter of debate. The smectite and kaolinite content most easily can be explained by erosion of sources largely hidden beneath the ice upstream. Less likely, these clay minerals reflect climatic conditions that were much warmer and wetter than today, facilitating chemical weathering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The history of glacial advances and retreats of the East Antarctic ice sheet during the Holocene is not well-known, due to limited field evidence in both the marine and terrestrial realm. A 257-cm-long sediment core was recovered from a marine inlet in the Rauer Group, East Antarctica, 1.8 km in front of the present ice-sheet margin. Radiocarbon dating and lithological characteristics reveal that the core comprises a complete marine record since 4500 yr. A significant ice-sheet expansion beyond present ice margins therefore did not occur during this period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ceara Rise, located east the Amazon River mouth, is covered with a thick blanket of pelagic carbonate and hemipelagic terrigenous sediment. The terrigenous component has been extracted from 57 bulk sediment samples at Ocean Drilling Program (ODP) Sites 925 and 929 on Ceara Rise to obtain a Cenozoic record of riverine discharge from northern South America. From the early Eocene to early Miocene (55-20 Ma), terrigenous accumulation was dominated by moderate amounts of generally large-grained, gray to green sediment especially depleted in elements that are enriched in post-Archaean shale (e.g. Cs, Th, Yb). However, pulsed inputs of relatively small-grained, gray to green terrigenous sediment less depleted in the above elements occurred in the late Eocene and Oligocene. The accumulation of terrigenous sediment decreased significantly until 16.5 Ma. In the middle Miocene (16.5-13 Ma), terrigenous accumulation was dominated by small amounts of small-grained, tan sediment notably depleted in Na and heavy rare earth elements. The accumulation rate of terrigenous sediment increased markedly from the latest Miocene (10 Ma) to the present day, a change characterized by deposition of gray-green sediment enriched in elements that are enriched in post-Archaean shale. Observed changes in terrigenous sediment at Ceara Rise record tectonism and erosion in northern South America. The Brazil and Guyana shields supplied sediment to the eastern South American margin until the middle Miocene (20-16.5 Ma) when a period of thrusting, shortening and uplift changed the source region, probably first to highly weathered and proximal Phanerozoic sediments. By the late Miocene (9 Ma), there was a transcontinental connection between the Andes and eastern South America. Weathering products derived from the Andes have increasingly dominated terrigenous deposition at Ceara Rise since the Late Miocene and especially since the late Pliocene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Limited information on the East Antarctic Ice Sheet (EAIS) geometry during Marine Isotope Stage 3 (MIS 3; 60-25 ka) restricts our understanding of its behaviour during periods of climate and sea level change. Ice sheet models forced by global parameters suggest an expanded EAIS compared to the Holocene during MIS 3, but field evidence from East Antarctic coastal areas contradicts such modelling, and suggests that the ice sheet margins were no more advanced than at present. Here we present a new lake sediment record, and cosmogenic exposure results from bedrock, which confirm that Rauer Group (eastern Prydz Bay) was ice-free for much of MIS 3. We also refine the likely duration of the Last Glacial Maximum (LGM) glaciation in the region. Lacustrine and marine sediments from Rauer Group indicate the penultimate period of ice retreat predates 50 ka. The lacustrine record indicates a change from warmer/wetter conditions to cooler/drier conditions after ca. 35 ka. Substantive ice sheet re-advance, however, may not have occurred until much closer to 20 ka. Contemporary coastal areas were still connected to the sea during MIS 3, restricting the possible extent of grounded ice in Prydz Bay on the continental shelf. In contrast, relative sea levels (RSL) deduced from field evidence indicate an extra ice load averaging several hundred metres thicker ice across the Bay between 45 and 32 ka. Thus, ice must either have been thicker immediately inland (with a steeper ice profile), or there were additional ice domes on the shallow banks of the outer continental shelf. Further work is required to reconcile the differences between empirical evidence of past ice sheet histories, and the history predicted by ice sheet models from far-field temperature and sea level records.