10 resultados para partnerships within the university environment

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wollongong, Australia is an urban site at the intersection of anthropogenic, biomass burning, biogenic and marine sources of atmospheric trace gases. The location offers a valuable opportunity to study drivers of atmospheric composition in the Southern Hemisphere. Here, a record of surface carbon monoxide (CO), methane (CH4) and carbon dioxide (CO2) was measured with an in situ Fourier transform infrared trace gas analyser between April 2011 and August 2014. Clean air was found to arrive at Wollongong in approximately 10% of air masses. Biomass burning influence was evident in the average annual cycle of clean air CO during austral spring. A significant negative short-term trend was found in clean air CO (-1.5 nmol/mol/a), driven by a reduction in northern Australian biomass burning. Significant short-term positive trends in clean air CH4 (5.4 nmol/mol/a) and CO2 (1.9 ?mol/mol/a) were consistent with the long-term global average trends. Polluted Wollongong air was investigated using wind-direction/wind-speed clustering, which revealed major influence from local urban and industrial sources from the south. High values of CH4, with anthropogenic DCH4/DCO2 enhancement ratio signatures, originated from the northwest, in the direction of local coal mining. A pollution climatology was developed for the region using back trajectory analysis and DO3/DCO enhancement ratios. Ozone production environments in austral spring and summer were associated with anticyclonic meteorology on the east coast of Australia, while ozone depletion environments in autumn and winter were associated with continental transport, or fast moving trajectories from southern latitudes. This implies the need to consider meteorological conditions when developing policies for controlling air quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results of primary production measurements obtained by different methods are presented. These methods are radiocarbon and oxygen modifications of the flask method, as well as fluorometric procedure with a PrimProd submersible probing fluorometer (produced at the Biological Department, Moscow State University). The research was carried out during a complex expedition aboard R/V Akademik Boris Petrov to the Norwegian Sea in July, 1977. Distributions of primary production values measured by different methods were correlated with other oceanographic data. Then a comparison of obtained values by the above-mentioned methods was performed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dataset presents hydro-sedimentary data within the Bossons glacier proglacial area. Bossons glacier is rapidly retreating and its proglacial area is deglaciated for ~ 30 years. It is an intriguing location to study periglacial, proglacial and subglacial erosion processes which requires estimating Total Dissolved Solid (TDS) and Total Suspended Solid (TSS) concentrations, and discharge. Measurements were performed at three distinct locations within Bosson glacier watershed : Bossons downstream (BDS), Bossons upstream (BUS) and Crosette (CRO). The latter is located at the glacier termini whereas BDS and BUS stations are farther downstream from the glacier, at 1.5 and 1.15 km, respectively .

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mineralogical and chemical analyses performed on 67 ferromanganese nodules from widely varying locations and depths within the marine environment of the Pacific Ocean indicate that the minor element composition is controlled by the mineralogy and that the formation of the mineral phases is depth dependent. The pressure effect upon the thermodynamics or kinetics of mineral formation is suggested as the governing agent in the depth dependence of the mineralogy. The minor elements, Pb and Co, appear concentrated in the dMnO2 phase, whereas Cu and Ni are more or less excluded from this phase. In the manganites, Pb and Co are relatively low in concentration, whereas Cu and Ni are spread over a wide range of values. The oxidation of Pb and Co from divalent forms in sea water to higher states can explain their concentration in the dMnO2 phase.