6 resultados para parental responsibility
em Publishing Network for Geoscientific
Resumo:
Substantial variations are reported for egg production and hatching rates of copepods exposed to elevated carbon dioxide concentrations (pCO2). One possible explanation, as found in other marine taxa, is that prior parental exposure to elevated pCO2 (and/or decreased pH) affects reproductive performance. Previous studies have adopted two distinct approaches, either (1) expose male and female copepoda to the test pCO2/pH scenarios, or (2) solely expose egg-laying females to the tests. Although the former approach is more realistic, the majority of studies have used the latter approach. Here, we investigated the variation in egg production and hatching success of Acartia tonsa between these two experimental designs, across five different pCO2 concentrations (385-6000 µatm pCO2). In addition, to determine the effect of pCO2 on the hatching success with no prior parental exposure, eggs produced and fertilized under ambient conditions were also exposed to these pCO2 scenarios. Significant variations were found between experimental designs, with approach (1) resulting in higher impacts; here >20% difference was seen in hatching success between experiments at 1000 µatm pCO2 scenarios (2100 year scenario), and >85% at 6000 µatm pCO2. This study highlights the potential to misrepresent the reproductive response of a species to elevated pCO2 dependent on parental exposure.
Resumo:
Sex differences in foraging behaviour are typically studied in size-dimorphic taxa. Data on sex-specific behavior in monomorphic taxa are needed to test theories of reproductive investment. It has been suggested that in seabirds foraging niche separation may be related to decreased intersexual competition for food between cooperating pair-bonded individuals. Alternatively, sex differences in foraging niches may be driven by different nutritional requirements of females associated with the reproductive costs of egg production and oviposition. To assess these possibilities, we studied a size-monomorphic colonial seabird, the Australasian Gannet (Morus serrator) at the Cape Kidnappers gannetry, New Zealand. We recorded maximum dive depths, and distinct diet composition of incubating females as indicated by stable isotopic signatures. Results suggested greater female foraging effort during early times of incubation, indicated by significantly deeper maximum dives. Sex-specific foraging patterns across other breeding stages were more variable. Nitrogen stable isotopic values showed that incubating females occupied a different trophic position compared to males at the same breeding stage, and also from those of gannets of both sexes at later stages of parental care. Overall, the data are consistent with cost-of-oviposition compensation in females necessitating male-bias in parental care in biparental breeders. Further research is needed to unravel the implications for the evolution of sex differences in behavior in this and other monomorphic taxa.
Resumo:
Rising CO2 levels in the oceans are predicted to have serious consequences for many marine taxa. Recent studies suggest that non-genetic parental effects may reduce the impact of high CO2 on the growth, survival and routine metabolic rate of marine fishes, but whether the parental environment mitigates behavioural and sensory impairment associated with high CO2 remains unknown. Here, we tested the acute effects of elevated CO2 on the escape responses of juvenile fish and whether such effects were altered by exposure of parents to increased CO2 (transgenerational acclimation). Elevated CO2 negatively affected the reactivity and locomotor performance of juvenile fish, but parental exposure to high CO2 reduced the effects in some traits, indicating the potential for acclimation of behavioural impairment across generations. However, acclimation was not complete in some traits, and absent in others, suggesting that transgenerational acclimation does not completely compensate the effects of high CO2 on escape responses.