9 resultados para paralytic shellfish poisoning (PSP)

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean acidification is considered a major threat to marine ecosystems and may particularly affect primary producers. Here we investigated the impact of elevated pCO2 on paralytic shellfish poisoning toxin (PST) content and composition in two strains of Alexandrium tamarense, Alex5 and Alex2. Experiments were carried out as dilute batch to keep carbonate chemistry unaltered over time. We observed only minor changes with respect to growth and elemental composition in response to elevated pCO2. For both strains, the cellular PST content, and in particular the associated cellular toxicity, was lower in the high CO2 treatments. In addition, Alex5 showed a shift in its PST composition from a nonsulfated analogue towards less toxic sulfated analogues with increasing pCO2. Transcriptomic analyses suggest that the ability of A. tamarense to maintain cellular homeostasis is predominantly regulated on the post-translational level rather than on the transcriptomic level. Furthermore, genes associated to secondary metabolite and amino acid metabolism in Alex5 were down-regulated in the high CO2 treatment, which may explain the lower PST content. Elevated pCO2 also induced up-regulation of a putative sulfotransferase sxtN homologue and a substantial down-regulation of several sulfatases. Such changes in sulfur metabolism may explain the shift in PST composition towards more sulfated analogues. All in all, our results indicate that elevated pCO2 will have minor consequences for growth and elemental composition, but may potentially reduce the cellular toxicity of A. tamarense.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular methods provide promising tools for routine detection and quantification of toxic microalgae in plankton samples. To this end, novel TaqMan minor groove binding probes and primers targeting the small (SSU) or large (LSU) ribosomal subunit (rRNA) were developed for two species of the marine dinoflagellate genus Alexandrium (A. minutum, A. tamutum) and for three groups/ribotypes of the A. tamarense species complex: Group I/North American (NA), Group II/Mediterranean (ME) and Group III/Western European (WE). Primers and probes for real-time quantitative PCR (qPCR) were species-specific and highly efficient when tested in qPCR assays for cross-validation with pure DNA from cultured Alexandrium strains. Suitability of the qPCR assays as molecular tools for the detection and estimation of relative cell abundances of Alexandrium species and groups was evaluated from samples of natural plankton assemblages along the Scottish east coast. The results were compared with inverted microscope cell counts (Utermöhl technique) of Alexandrium spp. and associated paralytic shellfish poisoning (PSP) toxin concentrations. The qPCR assays indicated that A. tamarense (Group I) and A. tamutum were the most abundant Alexandrium taxa and both were highly positively correlated with PSP toxin content of plankton samples. Cells of A. tamarense (Group III) were present at nearly all stations but in low abundance. Alexandrium minutum and A. tamarense (Group II) cells were not detected in any of the samples, thereby arguing for their absence from the specific North Sea region, at least at the time of the survey. The sympatric occurrence of A. tamarense Group I and Group III gives further support to the hypothesis that the groups/ribotypes of the A. tamarense species complex are cryptic species rather than variants belonging to the same species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dinoflagellates are a major cause of harmful algal blooms, with consequences for coastal marine ecosystem functioning and services. Alexandrium tamarense is one of the most abundant and widespread toxigenic species in the temperate northern and southern hemisphere, and produces paralytic shellfish poisoning toxins as well as lytic allelochemical substances. These bioactive compounds may support the success of A. tamarense and its ability to form blooms. Here we investigate the impact of grazing on monoclonal and mixed set-ups of highly (Alex2) and moderately (Alex4) allelochemically active A. tamarense strains and on a non-allelochemically active conspecific (Alex5) by the heterotrophic dinoflagellate Polykrikos kofoidii. While Alex4 and particularly Alex5 were strongly grazed by P. kofoidii when offered alone, both strains grew well in the mixed assemblages (Alex4+Alex5 and Alex2+Alex5). Hence, the allelochemical active strains facilitated growth of the non-active strain by protecting the population as a whole against grazing. Based on our results, we argue that facilitation among clonal lineages within a species may partly explain the high genotypic and phenotypic diversity of Alexandrium populations. Populations of Alexandrium may comprise multiple cooperative traits that act in concert with intraspecific facilitation, and hence promote the success of this notorious harmful algal bloom species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anthropogenic CO2 is progressively acidifying the ocean, but the responses of harmful algal bloom species that produce toxins that can bioaccumulate remain virtually unknown. The neurotoxin domoic acid is produced by the globally-distributed diatom genus Pseudo-nitzschia. This toxin is responsible for amnesic shellfish poisoning, which can result in illness or death in humans and regularly causes mass mortalities of marine mammals and birds. Domoic acid production by Pseudo-nitzschia cells is known to be regulated by nutrient availability, but potential interactions with increasing seawater CO2 concentrations are poorly understood. Here we present experiments measuring domoic acid production by acclimatized cultures of Pseudo-nitzschia fraudulenta that demonstrate a strong synergism between projected future CO2 levels (765 ppm) and silicate-limited growth, which greatly increases cellular toxicity relative to growth under modern atmospheric (360 ppm) or pre-industrial (200 ppm) CO2 conditions. Cellular Si:C ratios decrease with increasing CO2, in a trend opposite to that seen for domoic acid production. The coastal California upwelling system where this species was isolated currently exhibits rapidly increasing levels of anthropogenic acidification, as well as widespread episodic silicate limitation of diatom growth. Our results suggest that the current ecosystem and human health impacts of toxic Pseudo-nitzschia blooms could be greatly exacerbated by future ocean acidification and 'carbon fertilization' of the coastal ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phytoplankton populations can display high levels of genetic diversity that, when reflected by phenotypic variability, may stabilize a species response to environmental changes. We studied the effects of increased temperature and CO2 availability as predicted consequences of global change, on 16 genetically different isolates of the diatom Skeletonema marinoi from the Adriatic Sea and the Skagerrak (North Sea), and on eight strains of the PST (paralytic shellfish toxin)-producing dinoflagellate Alexandrium ostenfeldii from the Baltic Sea. Maximum growth rates were estimated in batch cultures of acclimated isolates grown for five to 10 generations in a factorial design at 20 and 24 °C, and present day and next century applied atmospheric pCO2, respectively. In both species, individual strains were affected in different ways by increased temperature and pCO2. The strongest response variability, buffering overall effects, was detected among Adriatic S. marinoi strains. Skagerrak strains showed a more uniform response, particularly to increased temperature, with an overall positive effect on growth. Increased temperature also caused a general growth stimulation in A. ostenfeldii, despite notable variability in strain-specific response patterns. Our data revealed a significant relationship between strain-specific growth rates and the impact of pCO2 on growth-slow growing cultures were generally positively affected, while fast growing cultures showed no or negative responses to increased pCO2. Toxin composition of A. ostenfeldii was consistently altered by elevated temperature and increased CO2 supply in the tested strains, resulting in overall promotion of saxitoxin production by both treatments. Our findings suggest that phenotypic variability within populations plays an important role in the adaptation of phytoplankton to changing environments, potentially attenuating short-term effects and forming the basis for selection. In particular, A. ostenfeldii blooms may expand and increase in toxicity under increased water temperature and atmospheric pCO2 conditions, with potentially severe consequences for the coastal ecosystem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combustion of fossil fuels has enriched levels of CO2 in the world's oceans and decreased ocean pH. Although the continuation of these processes may alter the growth, survival, and diversity of marine organisms that synthesize CaCO3shells, the effects of ocean acidification since the dawn of the industrial revolution are not clear. Here we present experiments that examined the effects of the ocean's past, present, and future (21st and 22nd centuries) CO2concentrations on the growth, survival, and condition of larvae of two species of commercially and ecologically valuable bivalve shellfish (Mercenaria mercenariaand Argopecten irradians). Larvae grown under near preindustrial CO2concentrations (250 ppm) displayed significantly faster growth and metamorphosis as well as higher survival and lipid accumulation rates compared with individuals reared under modern day CO2 levels. Bivalves grown under near preindustrial CO2 levels displayed thicker, more robust shells than individuals grown at present CO2 concentrations, whereas bivalves exposed to CO2 levels expected later this century had shells that were malformed and eroded. These results suggest that the ocean acidification that has occurred during the past two centuries may be inhibiting the development and survival of larval shellfish and contributing to global declines of some bivalve populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine phytoplankton has developed the remarkable ability to tightly regulate the concentration of free calcium ions in the intracellular cytosol at a level of ~ 0.1 µmol /l in the presence of seawater Ca2+ concentrations of 10 mmol/1. The low cytosolic calcium ion concentration is of utmost importance for proper cell signalling function. While the regulatory mechanisms responsible for the tight control of intracellular Ca2+ concentration are not completely understood, phytoplankton taxonomic groups appear to have evolved different strategies, which may affect their ability to cope with changes in seawater Ca2+ concentrations in their environment on geological time scales. For example, the Cretaceous (145 to 66 Ma ago), an era known for the high abundance of coccolithophores and the production of enormous calcium carbonate deposits, exhibited seawater calcium concentrations up to four times present-day levels. We show that calcifying coccolithophore species (Emiliania huxleyi, Gephyrocapsa oceanica and Coccolithus braarudii) are able to maintain their relative fitness (in terms of growth rate and photosynthesis) at simulated Cretaceous seawater calcium concentrations, whereas these rates are severely reduced under these conditions in some non-calcareous phytoplankton species (Chaetoceros sp., Ceratoneis closterium and Heterosigma akashiwo). Most notably, this also applies to a non-calcifying strain of E. huxleyi which displays a calcium-sensitivity similar to the non-calcareous species. We hypothesize that the process of calcification in coccolithophores provides an efficient mechanism to alleviate cellular calcium poisoning and thereby offered a potential key evolutionary advantage, responsible for the proliferation of coccolithophores during times of high seawater calcium concentrations. The exact function of calcification and the reason behind the highly-ornate physical structures of coccoliths remain elusive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding how seafood will be influenced by coming environmental changes such as ocean acidification is a research priority. One major gap in knowledge relates to the fact that many experiments are not considering relevant end points related directly to production (e.g., size, survival) and product quality (e.g., sensory quality) that can have important repercussions for consumers and the seafood market. The aim of this experiment was to compare the survival and sensory quality of the adult northern shrimp (Pandalus borealis) exposed for 3 wk to a temperature at the extreme of its thermal tolerance (11°C) and 2 pH treatments: pH 8.0 (the current average pH at the sampling site) and pH 7.5 (which is out of the current natural variability and relevant to near-future ocean acidification). Results show that decreased pH increased mortality significantly, by 63%. Sensory quality was assessed through semiqualitative scoring by a panel of 30 local connoisseurs. They were asked to rate 4 shrimp (2 from each pH treatment) for 3 parameters: appearance, texture and taste. Decreased pH reduced the score significantly for appearance and taste, but not texture. As a consequence, shrimp maintained in pH8.0 had a 3.4 times increased probability to be scored as the best shrimp on the plate, whereas shrimp from the pH 7.5 treatment had a 2.6 times more chance to be scored as the least desirable shrimp on the plate. These results help to prove the concept that ocean acidification can modulate sensory quality of the northern shrimp P. borealis. More research is now needed to evaluate impacts on other seafood species, socioeconomic consequences, and potential options.