97 resultados para pH conditions
em Publishing Network for Geoscientific
Resumo:
Ocean acidification (OA) and warming related to the anthropogenic increase in atmospheric CO2 have been shown to have detrimental effects on several marine organisms, especially those with calcium carbonate structures such as corals. In this study, we evaluate the response of two Mediterranean shallow-water azooxanthellate corals to the projected pH and seawater temperature (ST) scenarios for the end of this century. The colonial coral Astroides calycularis and the solitary Leptopsammia pruvoti were grown in aquaria over a year under two fixed pH conditions, control (8.05 pHT units) and low (7.72 pHT units), and simulating two annual ST cycles, natural and high (+3 °C). The organic matter (OM), lipid and protein content of the tissue and the skeletal microdensity of A. calycularis were not affected by the stress conditions (low pH, high ST), but the species exhibited a mean 25 % decrease in calcification rate at high-ST conditions at the end of the warm period and a mean 10 % increase in skeletal porosity under the acidified treatment after a full year cycle. Conversely, an absence of effects on calcification and skeletal microdensity of L. pruvoti exposed to low-pH and high-ST treatments contrasted with a significant decrease in the OM, lipid and protein content of the tissue at high-ST conditions and a 13 % mean increase in the skeletal porosity under low-pH conditions following a full year of exposure. This species-specific response suggests that different internal self-regulation strategies for energy reallocation may allow certain shallow-water azooxanthellate corals to cope more successfully than others with global environmental changes.
Resumo:
Coral reef ecosystems develop best in high-flow environments but their fragile frameworks are also vulnerable to high wave energy. Wave-resistant algal rims, predominantly made up of the crustose coralline algae (CCA) Porolithon onkodes and P. pachydermum, are therefore critical structural elements for the survival of many shallow coral reefs. Concerns are growing about the susceptibility of CCA to ocean acidification because CCA Mg-calcite skeletons are more susceptible to dissolution under low pH conditions than coral aragonite skeletons. However, the recent discovery of dolomite (Mg0.5Ca0.5(CO3)), a stable carbonate, in P. onkodes cells necessitates a reappraisal of the impacts of ocean acidification on these CCA. Here we show, using a dissolution experiment, that dried dolomite-rich CCA have 6-10 times lower rates of dissolution than predominantly Mg-calcite CCA in both high-CO2 (~ 700 ppm) and control (~ 380 ppm) environments, respectively. We reveal this stabilizing mechanism to be a combination of reduced porosity due to dolomite infilling and selective dissolution of other carbonate minerals. Physical break-up proceeds by dissolution of Mg-calcite walls until the dolomitized cell eventually drops out intact. Dolomite-rich CCA frameworks are common in shallow coral reefs globally and our results suggest that it is likely that they will continue to provide protection and stability for coral reef frameworks as CO2 rises.
Resumo:
This study examined the effects of long-term culture under altered conditions on the Antarctic sea urchin, Sterechinus neumayeri. Sterechinus neumayeri was cultured under the combined environmental stressors of lowered pH (-0.3 and -0.5 pH units) and increased temperature (+2 °C) for 2 years. This time-scale covered two full reproductive cycles in this species and analyses included studies on both adult metabolism and larval development. Adults took at least 6-8 months to acclimate to the altered conditions, but beyond this, there was no detectable effect of temperature or pH. Animals were spawned after 6 and 17 months exposure to altered conditions, with markedly different outcomes. At 6 months, the percentage hatching and larval survival rates were greatest in the animals kept at 0 °C under current pH conditions, whilst those under lowered pH and +2 °C performed significantly less well. After 17 months, performance was not significantly different across treatments, including controls. However, under the altered conditions urchins produced larger eggs compared with control animals. These data show that under long-term culture adult S. neumayeri appear to acclimate their metabolic and reproductive physiology to the combined stressors of altered pH and increased temperature, with relatively little measureable effect. They also emphasize the importance of long-term studies in evaluating effects of altered pH, particularly in slow developing marine species with long gonad maturation times, as the effects of altered conditions cannot be accurately evaluated unless gonads have fully matured under the new conditions.
Resumo:
Bacterial biofilms provide cues for the settlement of marine invertebrates such as coral larvae, and are therefore important for the resilience and recovery of coral reefs. This study aimed to better understand how ocean acidification may affect the community composition and diversity of bacterial biofilms on surfaces under naturally reduced pH conditions. Settlement tiles were deployed at coral reefs in Papua New Guinea along pH gradients created by two CO2 seeps, and upper and lower tiles surfaces were sampled 5 and 13 months after deployment. Automated Ribosomal Intergenic Spacer Analysis were used to characterize more than 200 separate bacterial communities, complemented by amplicon sequencing of the bacterial 16S rRNA gene of 16 samples. The bacterial biofilm consisted predominantly of Alpha-, Gamma- and Deltaproteobacteria, as well as Cyanobacteria, Flavobacteriia and Cytophaga, whereas putative settlement-inducing taxa only accounted for a small fraction of the community. Bacterial biofilm composition was heterogeneous with approximately 25% shared operational taxonomic units between samples. Among the observed environmental parameters, pH only had a weak effect on community composition (R² ~ 1%) and did not affect community richness and evenness. In contrast, there were strong differences between upper and lower surfaces (contrasting in light exposure and grazing intensity). There also appeared to be a strong interaction between bacterial biofilm composition and the macroscopic components of the tile community. Our results suggest that on mature settlement surfaces in situ, pH does not have a strong impact on the composition of bacterial biofilms. Other abiotic and biotic factors such as light exposure and interactions with other organisms may be more important in shaping bacterial biofilms than changes in seawater pH.
Resumo:
The Kiel Outdoor Benthocosm infrastructure (Kiel, Germany,N 54°19.8'; E 010°09.0') allows combining natural in-situ fluctuations on all environmental variables with the controlled manipulation of treatment factors. The environmental fluctuations are admitted by a continuous flow-through of fjord water. The treatment is applied by delta-treatments which shift the mean of target variables (temperature and pH in this case) while maintaining the frequency and amplitude of natural fluctuations. The data presented here show the treatment levels and the continuously logged temperature and pH conditions in the experimental tanks. The dynamics of temperature and pH are driven by (i) in situ variability, (ii) the treatments imposed and (iii) the biology of the biota in the tanks. These contained macroalgal communities with associated mesograzers, mussels, and sea stars. The data set comprised 5 experimental runs: spring experiment (4.4.-19.6.2013), summer experiment 1 (4.7.-17.9.2013), autumn experiment (10.10-17.12.2013), winter experiment (16.1. - 1.4.2014), summer experiment 2 (10.7. - 26.9.2014).
Resumo:
Ocean acidification (OA) is likely to exert selective pressure on natural populations. Our ability to predict which marine species will adapt to OA, and what underlies this adaptive potential, are of high conservation and resource management priority. Using a naturally low pH vent site in the Mediterranean Sea (Castello Aragonese, Ischia) mirroring projected future OA conditions, we carried out a reciprocal transplant experiment to investigate the relative importance of phenotypic plasticity and local adaptation in two populations of the sessile, calcifying polychaete /Simplaria /sp. (Annelida, Serpulidae, Spirorbinae): one residing in low pH and the other from a nearby ambient (i.e. high) pH site. We measured a suite of fitness related traits (i.e. survival, reproductive output, maturation, population growth) and tube growth rates in laboratory-bred F2 generation individuals from both populations reciprocally transplanted back into both ambient and low pH /in situ/ habitats. Both populations showed lower expression in all traits, but increased tube growth rates, when exposed to low pH compared to high pH conditions, regardless of their site of origin suggesting that local adaptation to low pH conditions has not occurred. We also found comparable levels of plasticity in the two populations investigated, suggesting no influence of long-term exposure to low pH on the ability of populations to adjust their phenotype. Despite high variation in trait values among sites and the relatively extreme conditions at sites close to the vents (pH < 7.36), response trends were consistent across traits. Hence, our data suggest that, for /Simplaria /and possibly other calcifiers, neither local adaptations nor sufficient phenotypic plasticity levels appear to suffice in order to compensate for the negative impacts of OA on long-term survival. Our work also underlines the utility of field experiments in natural environments subjected to high level of /p/CO_2 for elucidating the potential for adaptation to future scenarios of OA.
Resumo:
Elevated temperatures associated with ocean warming and acidification can influence development and, ultimately, success of larval molluscs. The effect of projected oceanic changes on fertilisation and larval development in an Antarctic bivalve, Laternula elliptica, was investigated through successive larval stages at ambient temperature and pH conditions (-1.6°C and pH 7.98) and conditions representative of projections through to 2100 (-0.5°C to +0.4°C and pH 7.80 to pH 7.65). Where significant effects were detected, increased temperature had a consistently positive influence on larval development, regardless of pH level, while effects of reduced pH varied with larval stage and incubation temperature. Fertilisation was high and largely independent of stressors, with no loss of gamete viability. Mortality was unaffected at all development stages under experimental conditions. Elevated temperatures reduced occurrences of abnormalities in D-larvae and accelerated larval development through late veliger and D-larval stages, with D-larvae occurring 5 d sooner at 0.4°C compared to ambient temperature. Reduced pH did not affect occurrences of abnormalities in larvae, but it slowed the development of calcifying stages. More work is required to investigate the effects of developmental delays of the magnitude seen here in order to better determine the ecological relevance of these changes on longer term larval and juvenile success.
Resumo:
Bulk X-ray mineralogy of 47 hemipelagic mud and clay samples from the Blake Outer Ridge has revealed that the sediments contain low magnesian calcite, calcian dolomite, ferroan dolomite, and magnesian siderite. Dolomite and siderite are authigenic and occur as rhombohedrons scattered through the sediments, whereas calcite is mostly biogenic. Pliocene dolomitic lenses are made up of interlocking polyhedral grains of ferroan dolomite. The contents of authigenic dolomite and siderite are 3 to 8% in carbonate sediments and 70 to 89% in dolomitic lenses. Dolomite occurs largely in the cores above 192 m sub-bottom depth, whereas siderite occurs in the cores below 87 m. The distribution and occurrence of dolomite and siderite have determined the diagenetic zonation of carbonates as Zone I (dolomitic zone, top-90 m), Zone II (transition zone, 90-180 m), and Zone III (sideritic zone, 180 m-bottom). Measurements of major and minor elements in the untreated total sediment samples and the insoluble residues after digestion in acid-reducing solution have revealed that the soluble fraction concentrates carbonates and ferromanganese associations (Ca, Mg, Sr, Fe, and Mn). Typical "hydrogenous elements" (Co, Cu, Ni, and V) are more concentrated in the insoluble residues rather than in the soluble fraction; the concentrations of these four elements are low and comparable to modern offshore mud, probably because the Site 533 sediments were deposited at a high rate of sedimentation. The contents of Fe2O3 and MnO are somewhat high for rapidly accumulated mud, particularly in the Pliocene sediments (8.09 and 0.26%, respectively, on a Carbonate-free basis). The high Fe and Mn contents are mainly due to the high contribution of the leacheable nonlithogenous fraction; leacheable Fe and Mn originate in the ferromanganese oxide accumulated on the seafloor. Only a small amount of ferric oxide was converted to iron sulfide in the surficial part of Zone I. Most ferromanganese oxide was reduced and precipitated as ferroan dolomite and magnesian siderite in Zones II and III under high alkalinity and high pH conditions in the organic-matter-rich sediments. Fe2+ and Mn2+ in the deeper sediments beneath Zone III possibly migrated upward and concentrated as siderite in Zone III, hence resulting in high contents of Fe and Mn in the Pliocene sediments. Analysis of carbonate zonation on the Blake Outer Ridge has revealed that the zonation is subparallel to the bedding plane rather than to the present seafloor. The sediments at Site 103 on the flank region of the Ridge are lacking Zone I and most of Zone II, probably the result of erosion of the most of the Pleistocene and Pliocene sediments by the enhanced bottom currents during the Pleistocene.
Resumo:
Excessive CO2 in the present-day ocean-atmosphere system is causing ocean acidification, and is likely to cause a severe biodiversity decline in the future, mirroring effects in many past mass extinctions. Fossil records demonstrate that organisms surviving such events were often smaller than those before, a phenomenon called the Lilliput effect. Here, we show that two gastropod species adapted to acidified seawater at shallow-water CO2 seeps were smaller than those found in normal pH conditions and had higher mass-specific energy consumption but significantly lower whole-animal metabolic energy demand. These physiological changes allowed the animals to maintain calcification and to partially repair shell dissolution. These observations of the long-term chronic effects of increased CO2 levels forewarn of changes we can expect in marine ecosystems as CO2 emissions continue to rise unchecked, and support the hypothesis that ocean acidification contributed to past extinction events. The ability to adapt through dwarfing can confer physiological advantages as the rate of CO2 emissions continues to increase.
Resumo:
Boron isotopic and elemental systematics are used to define the vital effects for the temperate shallow water Mediterranean coral Cladocora caespitosa. The corals are from a range of seawater pH conditions (pHT ~ 7.6 to ~ 8.1) and environmental settings: (1) naturally living colonies harvested from normal pH waters offshore Levanto, (2) colonies transplanted nearby a subsea volcanic vent system, and (3) corals cultured in aquaria exposed to high (700 µatm) and near present day (400 µatm) pCO2 levels. B/Ca compositions measured using laser ablation inductively coupled mass spectrometry (LA-ICPMS) show that boron uptake by C. caespitosa cultured at different pCO2 levels is independent of ambient seawater pH being mainly controlled by temperature-dependent calcification. In contrast, the boron isotope compositions (delta11Bcarb) of the full suite of corals determined by positive thermal ionisation mass spectrometry (PTIMS) shows a clear trend of decreasing delta11Bcarb (from 26.7 to 22.2 %o) with decreasing seawater pH, reflecting the strong pH dependence of the boron isotope system. The delta11Bcarb compositions together with measurements of ambient seawater parameters enable calibration of the boron pH proxy for C. caespitosa, by using a new approach that defines the relationship between ambient seawater pH (pHsw) and the internally controlled pH at the site of calcification (pHbiol). C. caespitosa exhibits a linear relationship between pHsw and the shift in pH due to physiological processes (deltapH = pHbiol - pHsw) giving the regression deltapHClad = 4.80 - 0.52* pHsw for this species. We further apply this method ("deltapH-pHsw") to calibrate tropical species of Porites, Acropora, and Stylophora reported in the literature. The temperate and tropical species calibrations are all linearly correlated (r2 > 0.9) and the biological fractionation component (deltapH) between species varies within ~ 0.2 pH units. Our "deltapH-pHsw" approach provides a robust and accurate tool to reconstruct palaeoseawater pHsw for both temperate and tropical corals, further validating the boron fractionation factor (alphaB3-B4 = 1.0272) determined experimentally by Klochko et al. (2006) and the boron isotope pH proxy, both of which have been the foci of considerable debate.
Resumo:
Authigenic gypsum, pyrite, and glauconite are disseminated throughout an unusually long (346 m) Miocene section of mixed biogenic carbonate and diatomaceous ooze drilled on the Falkland Plateau at DSDP Site 329 (water depth, 1519 m). The present organic carbon content of the sediment is low, ranging between 0.1 and 0.7%. Gypsum occurs as euhedral single or twinned crystals of selenite up to 5 mm in diameter, sometimes in the form of gypsum rosettes. These crystals are intact and unabraded, comprising up to 4% of the washed sample. The authigenic nature of the gypsum is demonstrated by the presence of diatoms and radiolarians embedded within the gypsum crystals. The gypsum co-occurs with pyrite and glauconite in these samples. The pyrite occurs as framboids, foraminiferal infillings, rods, and granular sheetlike masses composed of pyrite octahedra. The glauconite occurs as foraminiferal infillings and as free grains. The gypsum and pyrite were identified by energy-dispersive X-ray analysis and scanning electron micrographs. Some of the gypsum has grown on pyrite, indicating that it precipitated after the pyrite, perhaps in response to a change in pH conditions. The formation of the mineral suite can be explained by current models of in situ sulfide and sulfate precipitation coincident with diagenesis and oxidation of much of the original organic carbon.