52 resultados para orders of worth

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spectral absorption coefficients of total particulate matter ap (lambda) were determined using the in vitro filter technique. The present analysis deals with a set of 1166 spectra, determined in various oceanic (case 1) waters, with field chl a concentrations ([chl]) spanning 3 orders of magnitude (0.02-25 mg/m**3). As previously shown [Bricaud et al., 1995, doi:10.1029/95JC00463] for the absorption coefficients of living phytoplankton a phi (lamda), the ap (labda) coefficients also increase nonlinearly with [chl]. The relationships (power laws) that link ap (lambda) and a phi (lambda) to [chl] show striking similarities. Despite large fluctuations, the relative contribution of nonalgal particles to total absorption oscillates around an average value of 25-30% throughout the [chl] range. The spectral dependence of absorption by these nonalgal particles follows an exponential increase toward short wavelengths, with a weakly variable slope (0.011 ± 0.0025/nm). The empirical relationships linking ap (lambda) to ([chl]) can be used in bio-optical models. This parameterization based on in vitro measurements leads to a good agreement with a former modeling of the diffuse attenuation coefficient based on in situ measurements. This agreement is worth noting as independent methods and data sets are compared. It is stressed that for a given ([chl]), the ap (lambda) coefficients show large residual variability around the regression lines (for instance, by a factor of 3 at 440 nm). The consequences of such a variability, when predicting or interpreting the diffuse reflectance of the ocean, are examined, according to whether or not these variations in ap are associated with concomitant variations in particle scattering. In most situations the deviations in ap actually are not compensated by those in particle scattering, so that the amplitude of reflectance is affected by these variations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pteropods are a group of holoplanktonic gastropods for which global biomass distribution patterns remain poorly resolved. The aim of this study was to collect and synthesize existing pteropod (Gymnosomata, Thecosomata and Pseudothecosomata) abundance and biomass data, in order to evaluate the global distribution of pteropod carbon biomass, with a particular emphasis on its seasonal, temporal and vertical patterns. We collected 25 902 data points from several online databases and a number of scientific articles. The biomass data has been gridded onto a 360 x 180° grid, with a vertical resolution of 33 WOA depth levels. Data has been converted to NetCDF format. Data were collected between 1951-2010, with sampling depths ranging from 0-1000 m. Pteropod biomass data was either extracted directly or derived through converting abundance to biomass with pteropod specific length to weight conversions. In the Northern Hemisphere (NH) the data were distributed evenly throughout the year, whereas sampling in the Southern Hemisphere was biased towards the austral summer months. 86% of all biomass values were located in the NH, most (42%) within the latitudinal band of 30-50° N. The range of global biomass values spanned over three orders of magnitude, with a mean and median biomass concentration of 8.2 mg C l-1 (SD = 61.4) and 0.25 mg C l-1, respectively for all data points, and with a mean of 9.1 mg C l-1 (SD = 64.8) and a median of 0.25 mg C l-1 for non-zero biomass values. The highest mean and median biomass concentrations were located in the NH between 40-50° S (mean biomass: 68.8 mg C l-1 (SD = 213.4) median biomass: 2.5 mg C l-1) while, in the SH, they were within the 70-80° S latitudinal band (mean: 10.5 mg C l-1 (SD = 38.8) and median: 0.2 mg C l-1). Biomass values were lowest in the equatorial regions. A broad range of biomass concentrations was observed at all depths, with the biomass peak located in the surface layer (0-25 m) and values generally decreasing with depth. However, biomass peaks were located at different depths in different ocean basins: 0-25 m depth in the N Atlantic, 50-100 m in the Pacific, 100-200 m in the Arctic, 200-500 m in the Brazilian region and >500 m in the Indo-Pacific region. Biomass in the NH was relatively invariant over the seasonal cycle, but more seasonally variable in the SH. The collected database provides a valuable tool for modellers for the study of ecosystem processes and global biogeochemical cycles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Foraminifera were examined in recent (<100 years) fine-grained glaciomarine muds from surface sediments and cores from Nordensheld Bay, Novaja Zemlja, and Hornsund and Bellsund, Spitsbergen. This study presents the first data on modern foraminifera distribution for fjord environments in Novaja Zemlja, Russia. The data are interpreted with reference to the distribution of foraminiferal near Svalbard and the Barents Sea. In Nordensheld Bay, live and dead Nonionellina labradorica and Islandiella norcrossi are most abundant in the outer fjord. Cassidulina reniforme and Allogromiina spp. dominate in the middle and inner fjord. The dominant species are dissimilar to species occurring in other areas of the Barents Sea region, with the exception of Svalbard fjords. The number of live foraminifera (24 to 122 tests/10 cm1) in outer and middle Nordensheld Bay corresponds with values known from the open Barents Sea. However, the biomass (0.03 mg/10 cm**3) is two orders of magnitude less due to smaller foraminiferal test size, which in glaciomarine sediments reflects the absence of larger species, paucity of large specimens, and high occurrence of juvenile foraminifera. The smaller size indicates an opportunistic response to environmental stress due to glacier proximity. The presence of Quinqueloculina stalkeri is diagnostic of glaciomarine environments in fjords of Novaja Zemlja and Svalbard.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chert and associated host sediments from Monterey Formation and Deep Sea Drilling Project (DSDP) sequences were analyzed in order to assess chemical behavior during diagenesis of biogenic sediments. The primary compositional contrast between chert and host sediment is a greater absolute SiO2 concentration in chert, often with final SiO2 >=98 wt%. This contrast in SiO2 (and Si/Al) potentially reflects precursor sediment heterogeneity, diagenetic chemical fractionation, or both. SiO2 concentrations and Si/Al ratios in chert are far greater than in modern siliceous oozes, however and often exceed values in acid-cleaned diatom tests. Compositional contrasts between chert and host sediment are also orders-of-magnitude greater than between multiple samples of the host sediment. Calculations based on the initial composition of adjacent host, observed porosity reductions from host to chert and a postulated influx of pure SiO2, construct a chert composition which is essentially identical to observed SiO2 values in chert. Thus, precursor heterogeneity does not seem to be the dominant factor influencing the current chert composition for the key elements of interest. In order to assess the extent of chemical fractionation during diagenesis, we approximate the precursor composition by analyzing host sediments adjacent to the chert. The SiO2 concentration contrast seems caused by biogenic SiO2 dissolution and transport from the local adjacent host sediment and subsequent SiO2 reprecipitation in the chert. Along with SiO2, other elements are often added (with respect to Al) to Monterey and DSDP chert during silicification, although absolute concentrations decrease. The two Monterey quartz chert nodules investigated, in contrast to the opal-CT and quartz chert lenses, formed primarily by extreme removal of carbonate and phosphate, thereby increasing relative SiO2 concentrations. DSDP chert formed by both carbonate/phosphate dissolution and SiO2 addition from the host. Manganese is fractionated during chert formation, resulting in MnO/Al2O3 ratios that no longer record the depositional signal of the precursor sediment. REE data indicate only subtle diagenetic fractionation across the rare earth series. Ce/Ce* values do not change significantly during diagenesis of either Monterey or DSDP chert. Eu/Eu* decreases slightly during formation of DSDP chert. Normative La/Yb is affected only minimally as well. During formation of one Monterey opal-CT chert lens, REE/Al ratios show subtle distribution changes at Gd and to a lesser extent near Nd and Ho. REE compositional contrasts between diagenetic states of siliceous sediment and chert are of a vastly smaller scale than has been noted between different depositional environments of marine sediment, indicating that the paleoenvironmental REE signature is not obscured by diagenetic overprinting.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Serpentinite seamounts in the Mariana forearc have been explained as diapirs rising from the Benioff zone. This hypothesis predicts that the serpentinites should have low strengths as well as low densities relative to the surrounding rocks. Drilling during Leg 125 showed that the materials forming Conical Seamount in the Mariana forearc and Torishima Forearc Seamount in the Izu-Bonin forearc are water-charged serpentinite muds of density <2 g/cm**3. Wykeham-Farrance torsion-vane tests showed that they are plastic solids with a rheology that bears many similarities to the idealized Cam clay soil model and is well described by critical-state soil mechanics. The serpentinite muds have ultimate strengths of 1.3 to 273.7 kPa and yield strengths of approximately 1.0 to 50 kPa. These muds thus are orders of magnitude weaker than salt and are, in fact, comparable in density and strength to common deep-sea clay muds. Such weak and low-density materials easily become diapiric. Serpentinite muds from the summit of Conical Seamount are weaker and more ductile than those on its flanks or on Torishima Forearc Seamount. Moreover, the summit muds do not contain the pronounced pure- and simple-shear fabrics that characterize those on the seamount flanks. The seamounts are morphologically similar to shield volcanoes, and anastomosing serpentinite debris flows descending from their summits are similar in map view to pahoehoe flows. These morphologic features, together with the physical properties of the muds and their similarities to other oceanic muds and the geochemistry of the entrained waters, suggest that many forearc serpentinite seamounts are gigantic (10-20 km wide, 1.5-2.0 km high) mud volcanoes that formed by the eruption of highly liquid serpentinite muds. Torishima Forearc Seamount, which is blanketed by more ìnormalî pelagic/volcaniclastic sediment, has probably been inactive since the Miocene. Conical Seamount, which seems to consist entirely of serpentinite mud and is venting fresh water of unusual chemistry from its summit, is presently active. Muds from the flanks of Conical Seamount are stronger and more brittle than those from the summit site, and muds from Torishima Forearc Seamount are stronger yet; this suggests that the serpentinite debris flows are compacted and dewatered as they mature. The shear fabrics probably result from downslope creep and flow, but may also be inherited.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Metamodels have proven be very useful when it comes to reducing the computational requirements of Evolutionary Algorithm-based optimization by acting as quick-solving surrogates for slow-solving fitness functions. The relationship between metamodel scope and objective function varies between applications, that is, in some cases the metamodel acts as a surrogate for the whole fitness function, whereas in other cases it replaces only a component of the fitness function. This paper presents a formalized qualitative process to evaluate a fitness function to determine the most suitable metamodel scope so as to increase the likelihood of calibrating a high-fidelity metamodel and hence obtain good optimization results in a reasonable amount of time. The process is applied to the risk-based optimization of water distribution systems; a very computationally-intensive problem for real-world systems. The process is validated with a simple case study (modified New York Tunnels) and the power of metamodelling is demonstrated on a real-world case study (Pacific City) with a computational speed-up of several orders of magnitude.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Little is known about the benthic communities of the Arctic Ocean's slope and abyssal plains. Here we report on benthic data collected from box cores along a transect from Alaska to the Barents Abyssal Plain during the Arctic Ocean Section of 1994. We determined: (1) density and biomass of the polychaetes, foraminifera and total infauna; (2) concentrations of potential sources of food (pigment concentration and percent organic carbon) in the sediments; (3) surficial particle mixing depths and rates using downcore 210Pb profiles; and (4) surficial porewater irrigation using NaBr as an inert tracer. Metazoan density and biomass vary by almost three orders of magnitude from the shelf to the deep basins (e.g. 47 403 individuals m**-2 on the Chukchi Shelf to 95 individuals m**-2 in the Barents Abyssal Plain). Water depth is the primary determinant of infaunal density, explaining 39% of the total variability. Potential food concentration varies by almost two orders of magnitude during the late summer season (e.g. the phaeopigment concentration integrated to 10 cm varies from 36.16 mg m**-2 on the Chukchi Shelf to 0.94 mg m**-2 in the Siberia Abyssal Plain) but is not significantly correlated with density or biomass of the metazoa. Most stations show evidence of particle mixing, with mixing limited to <=3 cm below the sediment-water interface, and enhanced pore water irrigation occurs at seven of the nine stations examined. Particle mixing depths may be related to metazoan biomass, while enhanced pore water irrigation (beyond what is expected from diffusion alone) appears to be related to total phaeopigment concentration. The data presented here indicate that Arctic benthic ecosystems are quite variable, but all stations sampled contained infauna and most stations had indications of active processing of the sediment by the associated infauna.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissolved organic carbon (DOC) was determined in pore water extracted from pelagic and hemipelagic sediments recovered during Leg 113. DOC concentration varied between 1.82 and 13.6 mg C/L which is one to two orders of magnitude less than previously reported for hemipelagic sediments. It is argued that this difference is related to differences in the intensity of degradation of organic matter. As a first approximation it is found that in reducing sediments, the level of DOC is proportional to the intensity of sulfate reduction. It is suggested that DOC is formed by different mechanisms in oxic and reducing environments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A manganese oxide crust from an extensive deposit in the median valley of the Mid-Atlantic Ridge was found to be unusually high in manganese (up to 39.4% Mn), low in Fe (as low as 0.01% Fe), low in trace metals and deficient in Th230 and Pa231 with respect to the parent uranium isotopes in the sample. The accumulation rate is 100 mm to 200 mm/10 million year, or 2 orders of magnitude faster than the typical rate for deep-sea ferromanganese deposits. The rapid growth rate and unusual chemistry are consistent with a hydrothermal origin or with a diagenetic origin by manganese remobilized from reduced sediments. Because of the association with an active ridge, geophysical evidence indicative of hydrothermal activity, and a scarcity of sediment in the sampling area, we suggest that a submarine hot spring has created the deposit.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have studied the magnetic properties of 22 samples from DSDP Leg 83 to determine the origin of remanence and its relationship to such problems as the tectonic and chemical evolution of the section, the depth of the magnetized layer, and the applicability of magnetic properties of ophiolites to the marine crust. The magnitude of natural remanence has fairly typical values in the uppermost part of the section, falls two to three orders of magnitude in the transition zone, and returns to values slightly less than the upper part in the dike complex. This behavior reflects, for the most part, variations in the amount of magnetic minerals present. Directional behavior is highly variable throughout the section and often shows complexity even on the level of a single sample. Curie temperature measurements and preliminary opaque petrography indicate that the remanence is chemical in origin and probably involves a resetting of the original thermal remanent magnetization (TRM) direction. Selective destructive demagnetization of four breccia samples shows that the remanence of the clasts was acquired prior to consolidation and did not change significantly thereafter. There are also indications that some of the remanence may be carried by secondary magnetic phases. A comparison of these samples with comparable ophiolite rocks is equivocal, with similarities in remanence characteristics but differences in magnetic mineralogy. As for magnetic anomalies, the transition zone is too weakly magnetized to contribute significantly. The available data on the dike complex are inconclusive and their contribution is still open to debate.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The solution rate of biogenic opal in near-surface sediments in the Central Equatorial Pacific is three to eight orders of magnitude lower than similar acid-cleaned samples. Iron, magnesium and calcium aluminosilicates may be the minerals which are forming on the surface of the opal and reducing its solution rate. The scale height of the system studied suggests that diffusive and not advective processes are primarily responsible for the removal of dissolved silica in sediments. Solution budget calculations for this area suggest that 90-99 per cent of the biogenic opal produced in surface waters dissolves before reaching the sediment-water interface; an additional amount dissolves within the sediment and diffuses into bottom waters leaving 0.05-0.15 per cent of the original amount of opal produced by organisms in the sedimentary record. The relative solution potential of the upper 1000 m of the water column varies by more than an order of magnitude from the Antarctic to Equator and may have a pronounced effect on the accumulation rate of biogenic opal in underlying sediments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a novel graphical user interface program GrafLab (GRAvity Field LABoratory) for spherical harmonic synthesis (SHS) created in MATLAB®. This program allows to comfortably compute 38 various functionals of the geopotential up to ultra-high degrees and orders of spherical harmonic expansion. For the most difficult part of the SHS, namely the evaluation of the fully normalized associated Legendre functions (fnALFs), we used three different approaches according to required maximum degree: (i) the standard forward column method (up to maximum degree 1800, in some cases up to degree 2190); (ii) the modified forward column method combined with Horner's scheme (up to maximum degree 2700); (iii) the extended-range arithmetic (up to an arbitrary maximum degree). For the maximum degree 2190, the SHS with fnALFs evaluated using the extended-range arithmetic approach takes only approximately 2-3 times longer than its standard arithmetic counterpart, i.e. the standard forward column method. In the GrafLab, the functionals of the geopotential can be evaluated on a regular grid or point-wise, while the input coordinates can either be read from a data file or entered manually. For the computation on a regular grid we decided to apply the lumped coefficients approach due to significant time-efficiency of this method. Furthermore, if a full variance-covariance matrix of spherical harmonic coefficients is available, it is possible to compute the commission errors of the functionals. When computing on a regular grid, the output functionals or their commission errors may be depicted on a map using automatically selected cartographic projection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Distribution of pore space and degree of cementation appear to be the main factors controlling the permeability of sediments retrieved from the Lau Basin. The undisturbed microfabrics of two lithologies, nannofossil ooze and vitric sandy silt, commonly found at Holes 834A, 835A, 838A, and 839Aof Leg 135 were examined by scanning electron microscopy equipped with energy dispersive X-ray spectral analysis and image analysis systems. The results of these analyses were compared with laboratory determinations of porosity, grain-size distribution, and permeability on discrete samples from the same sediment depths. The permeability of the vitric sandy silt is 3-5 orders of magnitude higher than the nannofossil ooze samples. The porosity of nannofossil ooze ranges from 6% to 12% greater than the porosity of vitric sandy silt, which partially reflects the finer texture of nannofossil ooze. Although the correlation of higher porosity with lower permeability is not surprising, factors other than simply grain-size distribution must be invoked to explain the large differences in permeability found in these samples.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recently published studies of Ocean Drilling Project (ODP) cores from near southeast Asia revealed microtektite contents much higher than those in previously studied cores, suggesting that Ir contents might be enhanced in the tektite-bearing horizons. We determined a positive Ir anomaly in ODP core 758B from the Ninetyeast Ridge, eastern Indian Ocean; the peak Ir concentration of 190 pg/ g was ~2X the continuum level. The net Ir fluence is 1.8+/-0.5 ng/cm**2 over the depth interval from 10.87 to 11.32 m; a small additional peak also associated with microtektites contributes another 0.5 ng Ir/cm**2. Concentrations of Ir in core 769A show more scatter, but a small Ir enhancement is associated with the peak microtektite abundance; our best estimate of the poorly constrained fluence is 1.3+/-0.7 ng/cm**2. Data on deep-sea cores show that the microtektite fluence falls exponentially away from southeast Asia, the fluence dropping a factor of 2 in ~400 km. In southeast Asia the trend merges with a roughly estimated mass fluence of ~1.1 g/cm**2 inferred from evidence of a melt sheet in northeast Thailand. Integration of the inferred distribution yields a total mass of Australasian tektites of 3.2x10**16 g, much higher than previous estimates. Assuming a similar fallout distribution for the impactor and a chondritic composition allows us to calculate its mass to be 1.5x10**15 g, about 3 orders of magnitude smaller than the minimum mass of the impactor responsible for the extinctions at the end of the Cretaceous.