6 resultados para nutritional changes in grain

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analysed long-term variations in grain-size distribution in sediments from Gåsfjärden, a fjord-like inlet on the south-west Baltic Sea, and explored potential drivers of the recorded changes in sediment grain-size data. Over the last 5.4 thousand years (ka), the relative sea level decreased 17 m in the study region, caused by isostatic land uplift. As a consequence, Gåsfjärden has been transformed from an open coastal setting into a semi-closed inlet surrounded on the east by numerous small islands. To quantitatively estimate the morphological changes in Gåsfjärden over the last 5.4 ka and to further link the changes to our grain-size data, a digital elevation model (DEM)-based openness index was calculated. In the period between 5.4 and 4.4 ka BP, the inlet was characterised by the largest openness index. During this interval, the highest sand contents (~0.4 %) and silt/clay ratios (~0. 3) in the sediment sequence were recorded, indicating relatively high bottom water energy. After 4.4 ka BP, the average sand content was halved to ~0.2 % and the silt/clay ratios showed a significant decreasing trend over the last 4 ka. These changes are found to be associated with the gradual embayment of Gåsfjärden as represented in the openness index. The silt/clay ratios exhibited a delayed and slower change compared with the sand contents, which further suggest that finer particles are less sensitive to changes in hydrodynamic energy. Our DEM-based coastal openness index has proved to be a useful tool for interpreting the sedimentary grain-size record.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paleoecology of Cretaceous planktic foraminifera during the Late Cenomanian to Coniacian period (~95-86 Ma) remains controversial since much of the tropical marine record is preserved as chalk and limestone with uncertain geochemical overprints. Here we present delta13C and delta18O data from sieve size fractions of monospecific samples of exceptionally well preserved planktic foraminifera recovered during Ocean Drilling Program Leg 207 (Demerara Rise, western tropical Atlantic). Our results suggest that all species studied (Hedbergella delrioensis, Heterohelix globulosa, Marginotruncana sinuosa, Whiteinella baltica) grew primarily in surface waters and did not change their depth habitat substantially during their life cycle. Comparison of size-related ontogenetic trends in delta13C in Cretaceous and modern foraminifera further suggests that detection of dinoflagellate photosymbiosis using delta13C is confounded by physiological effects during the early stages of foraminifer growth, raising doubts about previous interpretations of photosymbiosis in small foraminifera species. We propose that obligate photosymbiosis involving dinoflagellates may not have evolved until the Campanian or Maastrichtian since our survey of Cenomanian-Coniacian species does not find the delta18O and delta13C size-related trends observed in modern foraminifer-dinoflagellate symbioses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a 3000-yr rainfall reconstruction from the Galápagos Islands that is based on paired biomarker records from the sediment of El Junco Lake. Located in the eastern equatorial Pacific, the climate of the Galápagos Islands is governed by movements of the Intertropical Convergence Zone (ITCZ) and the El Niño-Southern Oscillation (ENSO). We use a novel method for reconstructing past ENSO- and ITCZ-related rainfall changes through analysis of molecular and isotopic biomarker records representing several types of plants and algae that grow under differing climatic conditions. We propose that ?D values of dinosterol, a sterol produced by dinoflagellates, record changes in mean rainfall in El Junco Lake, while dD values of C34 botryococcene, a hydrocarbon unique to the green alga Botryococcus braunii, record changes in rainfall associated with moderate-to-strong El Niño events. We use these proxies to infer changes in mean rainfall and El Niño-related rainfall over the past 3000 yr. During periods in which the inferred change in El Niño-related rainfall opposed the change in mean rainfall, we infer changes in the amount of ITCZ-related rainfall. Simulations with an idealized isotope hydrology model of El Junco Lake help illustrate the interpretation of these proxy reconstructions. Opposing changes in El Niño- and ITCZ-related rainfall appear to account for several of the largest inferred hydrologic changes in El Junco Lake. We propose that these reconstructions can be used to infer changes in frequency and/or intensity of El Niño events and changes in the position of the ITCZ in the eastern equatorial Pacific over the past 3000 yr. Comparison with El Junco Lake sediment grain size records indicates general agreement of inferred rainfall changes over the late Holocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Weddell Sea and the associated Filchner-Rønne Ice Shelf constitute key regions for global bottomwater production today. However, little is known about bottom-water production under different climate and icesheet conditions. Therefore, we studied core PS1795, which consists primarily of fine-grained siliciclastic varves that were deposited on contourite ridges in the southeastern Weddell Sea during the Last Glacial Maximum (LGM). We conducted high-resolution X-ray fluorescence (XRF) analysis and grain-size measurements with the RADIUS tool (Seelos and Sirocko, 2005, doi:10.1111/j.1365-3091.2005.00715.x) using thin sections to characterize the two seasonal components of the varves at sub-mm resolution to distinguish the seasonal components of the varves. Bright layers contain coarser grains that can mainly be identified as quartz in the medium-to-coarse silt grain size. They also contain higher amounts of Si, Zr, Ca, and Sr, as well as more ice-rafted debris (IRD). Dark layers, on the other hand, contain finer particles such as mica and clay minerals from the chlorite and illite groups. In addition, Fe, Ti, Rb, and K are elevated. Based on these findings as well as on previous analyses on neighbouring cores, we propose a model of enhanced thermohaline convection in front of a grounded ice sheet that is supported by seasonally variable coastal polynya activity during the LGM. Accordingly, katabatic (i.e. offshore blowing) winds removed sea ice from the ice edge, leading to coastal polynya formation. We suggest that glacial processes were similar to today with stronger katabatic winds and enhanced coastal polynya activity during the winter season. Under these conditions, lighter coarser-grained layers are likely glacial winter deposits, when brine rejection was increased, leading to enhanced bottom-water formation and increased sediment transport. Vice versa, darker finer-grained layers were then deposited during less windier season, mainly during summer, when coastal polynya activity was likely reduced.