192 resultados para nutrients and sulfur application
em Publishing Network for Geoscientific
Resumo:
Comprehensive isotopic studies based on data from the Deep Sea Drilling Project have elucidated numerous details of the low- and high-temperature mechanisms of interaction between water and rocks of ocean crustal seismic Layers 1 and 2. These isotopic studies have also identified climatic changes during the Meso-Cenozoic history of oceans. Data on the abundance and isotopic composition of sulfur in the sedimentary layer as well as in rocks of the volcanic basement are more fragmentary than are oxygen and carbon data. In this chapter we specifically concentrate upon isotopic data related to specific features of the mechanisms of low-temperature interaction of water with sedimentary and volcanogenic rocks. The Leg 59 data provide a good opportunity for such lithologic and isotopic studies, because almost 600 meters of basalt flows and sills interbedded with tuffs and volcaniclastic breccias were cored during the drilling of Hole 448A. Moreover, rocks supposedly exposed to hydrothermal alteration play an important role at the deepest horizons of that mass. Sulfur isotopic studies of the character of possible biogenic processes of sulfate reduction in sediments are another focus, as well as the nature and origin of sulfide mineralization in Layer-2 rocks of remnant island arcs. Finally, oxygen and carbon istopic analyses of biogenic carbonates in the cores also enabled us to investigate the effects of changing climatic conditions during the Cenozoic. These results are compared with previous data from adjacent regions of the Pacific Ocean. Thus this chapter describes results of isotopic analyses of: oxygen and sulfur of interstitial water; oxygen and carbon of sedimentary carbonates and of calcite intercalations and inclusions in tuffs and volcaniclastic breccias interbedded with basalt flows; and sulfur of sulfides in these rocks.
Resumo:
As part of the geochemical-petrological study of basalts recovered from DSDP Hole 504B (Leg 70) on the southern flank of the Costa Rica Rift, we investigated specially the relationships between the distribution and isotopic composition of sulfur of scattered and vein sulfides on the one hand, and the observed pattern and processes of secondary alterations on the other. The following groups of observations are essential: (1) variations in the contents and isotopic composition of sulfur of different forms of sulfides are clearly interrelated and are observed solely in porous horizons established on the basis of detailed geophysical experiments; (2) the enrichment of sulfides in the light sulfur isotope decreases from the upper to the lower horizons, and within horizons in the direction of the less-altered rock; (3) the increase of d34S values of scattered sulfides in individual permeable zones parallels a decrease in the degree of iron oxidation in the contents of crystallization water, and in the concentrations of Mg, K, and Li in the rock.
Resumo:
Dynamics of phosphates and silicates in sea ice of the high-latitudinal Arctic are considered for period from November 2005 to May 2006. It is shown that, during ice formation, silicates are included into it in the same ratio to salinity that is characteristic of under-ice water. Further dynamics of silicates are determined by their bioassimilation with beginning of the polar day and by biogenic silicon accumulation at bottom meltwater pools with subsequent leaching. Phosphates are included into ice in a ratio higher than that occurring in the under-ice water. This is caused by the fact that liquid phase of sea ice represents composition of the surface microlayer at the ice-water interface, which is enriched in organic matter and in products of its destruction (particularly in phosphates). With onset of the polar day, content of phosphates first markedly increases (due to photo oxidation of biogenic organic matter) and then decreases because of bioassimilation. At the beginning of the polar day, primary production of diatoms was estimated to be ~0.3 mg C/m**2/day.
Resumo:
Zooxanthellate colonies of the scleractinian coral Astrangia poculata were grown under combinations of ambient and elevated nutrients (5 µM NO, 0.3 µM PO4, and 2nM Fe) and CO2 (780 ppmv) treatments for a period of 6 months. Coral calcification rates, estimated from buoyant weights, were not significantly affected by moderately elevated nutrients at ambient CO2 and were negatively affected by elevated CO2 at ambient nutrient levels. However, calcification by corals reared under elevated nutrients combined with elevated CO2 was not significantly different from that of corals reared under ambient conditions, suggesting that CO2 enrichment can lead to nutrient limitation in zooxanthellate corals. A conceptual model is proposed to explain how nutrients and CO2 interact to control zooxanthellate coral calcification. Nutrient limited corals are unable to utilize an increase in dissolved inorganic carbon (DIC) as nutrients are already limiting growth, thus the effect of elevated CO2 on saturation state drives the calcification response. Under nutrient replete conditions, corals may have the ability to utilize more DIC, thus the calcification response to CO2 becomes the product of a negative effect on saturation state and a positive effect on gross carbon fixation, depending upon which dominates, the calcification response can be either positive or negative. This may help explain how the range of coral responses found in different studies of ocean acidification can be obtained.
Resumo:
Whole rock sulfur and oxygen isotope compositions of altered peridotites and gabbros from near the 15°20'N Fracture Zone on the Mid-Atlantic Ridge were analyzed to investigate hydrothermal alteration processes and test for a subsurface biosphere in oceanic basement. Three processes are identified. (1) High-temperature hydrothermal alteration (~250-350°C) at Sites 1268 and 1271 is characterized by 18O depletion (2.6-4.4 per mil), elevated sulfide-S, and high delta34S (up to ~2 wt% and 4.4-10.8 per mil). Fluids were derived from high-temperature (>350°C) reaction of seawater with gabbro at depth. These cores contain gabbroic rocks, suggesting that associated heat may influence serpentinization. (2) Low-temperature (<150°C) serpentinization at Sites 1272 and 1274 is characterized by elevated delta18O (up to 8.1 per mil), high sulfide-S (up to ~3000 ppm), and negative delta34S (to -32.1 per mil) that reflect microbial reduction of seawater sulfate. These holes penetrate faults at depth, suggesting links between faulting and temperatures of serpentinization. (3) Late low-temperature oxidation of sulfide minerals caused loss of sulfur from rocks close to the seafloor. Sulfate at all sites contains a component of oxidized sulfide minerals. Low delta34S of sulfate may result from kinetic isotope fractionation during oxidation or may indicate readily oxidized low-delta34S sulfide derived from microbial sulfate reduction. Results show that peridotite alteration may be commonly affected by fluids +/- heat derived from mafic intrusions and that microbial sulfate reduction is widespread in mantle exposed at the seafloor.
Resumo:
The response of phytoplankton assemblages to hydrographical forcing across the southern Brazilian shelf was studied based on data collected during wintertime (June/2012), complemented with MODIS-Aqua satellite imagery. The in situ data set was comprised by water column structure properties (derived from CTD casts), dissolved inorganic nutrients (ammonium, nitrite, nitrate, phosphate and silicate) and phytoplankton biomass [chlorophyll a (Chl a) concentration] and composition. Phytoplankton assemblages were assessed by both microscopy and HPLC-CHEMTAX approaches. A canonical correspondence analysis associating physical, chemical and phytoplankton composition data at surface evinced a tight coupling between the phytoplankton community and hydrographic conditions, with remarkable environmental gradients across three different domains: the pelagic, outer shelf Tropical Water (TW); the mid shelf domain under influence of Subtropical Shelf Water (STSW); and the inner shelf domain mainly under influence of riverine outflow of the Plata River Plume Water (PPW). Results showed that intrusion of low salinity and nutrient-rich PPW stimulated the phytoplankton growth and diversity within the inner shelf region, with enhanced Chl a levels (>1.3 mg/m**3) and a great abundance of diatoms, ciliates, dinoflagellates, raphidophyceans and cryptophytes. Conversely, other diatoms (e.g. Rhizosolenia clevei), tiny species of prochlorophytes and cyanobacteria and a noticeable contribution of dinoflagellates and other flagellates associated with lower Chl a levels (<0.93 mg/m**3), characterized the TW domain, where low nutrient concentrations and deep upper mixed layer were found. The transitional mid shelf domain showed intermediate levels of both nutrients and Chl a (ranging 1.06-1.59 mg/m**3), and phytoplankton was mainly composed by dinoflagellates, such as Dinophysis spp., and gymnodinioids. Results have shown considerable phytoplankton diversity in winter at that section of the southwestern Atlantic Ocean.