3 resultados para numerical prediction

em Publishing Network for Geoscientific


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The importance of renewable energies for the European electricity market is growing rapidly. This presents transmission grids and the power market in general with new challenges which stem from the higher spatiotemporal variability of power generation. This uncertainty is due to the fact that renewable power production results from weather phenomena, thus making it difficult to plan and control. We present a sensitivity study of a total solar eclipse in central Europe in March. The weather in Germany and Europe was modeled using the German Weather Service's local area models COSMO-DE and COSMO-EU, respectively (http://www.cosmo-model.org/). The simulations were performed with and without considering a solar eclipse for the following 3 situations: 1. An idealized, clear-sky situation for the entire model area (Europe, COSMO-EU) 2. A real weather situation with mostly cloudy skies (Germany, COSMO-DE) 3. A real weather situation with mostly clear skies (Germany, COSMO-DE) The data should help to evaluate the effects of a total solar eclipse on the weather in the planetary boundary layer. The results show that a total solar eclipse has significant effects particularly on the main variables for renewable energy production, such as solar irradiation and temperature near the ground.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce two probabilistic, data-driven models that predict a ship's speed and the situations where a ship is probable to get stuck in ice based on the joint effect of ice features such as the thickness and concentration of level ice, ice ridges, rafted ice, moreover ice compression is considered. To develop the models to datasets were utilized. First, the data from the Automatic Identification System about the performance of a selected ship was used. Second, a numerical ice model HELMI, developed in the Finnish Meteorological Institute, provided information about the ice field. The relations between the ice conditions and ship movements were established using Bayesian learning algorithms. The case study presented in this paper considers a single and unassisted trip of an ice-strengthened bulk carrier between two Finnish ports in the presence of challenging ice conditions, which varied in time and space. The obtained results show good prediction power of the models. This means, on average 80% for predicting the ship's speed within specified bins, and above 90% for predicting cases where a ship may get stuck in ice. We expect this new approach to facilitate the safe and effective route selection problem for ice-covered waters where the ship performance is reflected in the objective function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Model for Prediction Across Scales (MPAS) is a novel set of Earth system simulation components and consists of an atmospheric model, an ocean model and a land-ice model. Its distinct features are the use of unstructured Voronoi meshes and C-grid discretisation to address shortcomings of global models on regular grids and the use of limited area models nested in a forcing data set, with respect to parallel scalability, numerical accuracy and physical consistency. This concept allows one to include the feedback of regional land use information on weather and climate at local and global scales in a consistent way, which is impossible to achieve with traditional limited area modelling approaches. Here, we present an in-depth evaluation of MPAS with regards to technical aspects of performing model runs and scalability for three medium-size meshes on four different high-performance computing (HPC) sites with different architectures and compilers. We uncover model limitations and identify new aspects for the model optimisation that are introduced by the use of unstructured Voronoi meshes. We further demonstrate the model performance of MPAS in terms of its capability to reproduce the dynamics of the West African monsoon (WAM) and its associated precipitation in a pilot study. Constrained by available computational resources, we compare 11-month runs for two meshes with observations and a reference simulation from the Weather Research and Forecasting (WRF) model. We show that MPAS can reproduce the atmospheric dynamics on global and local scales in this experiment, but identify a precipitation excess for the West African region. Finally, we conduct extreme scaling tests on a global 3?km mesh with more than 65 million horizontal grid cells on up to half a million cores. We discuss necessary modifications of the model code to improve its parallel performance in general and specific to the HPC environment. We confirm good scaling (70?% parallel efficiency or better) of the MPAS model and provide numbers on the computational requirements for experiments with the 3?km mesh. In doing so, we show that global, convection-resolving atmospheric simulations with MPAS are within reach of current and next generations of high-end computing facilities.