6 resultados para noise level

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The oxygen isotope records of G. sacculifer and Pulleniatina in the uppermost three cores at Ocean Drilling Program Hole 805C span the last 1.6 m.y., an estimate based on Fourier stratigraphy. The last 700,000 yr are dominated by both eccentricity and obliquity-related orbital fluctuations. The range of variation of delta18O values is about 1.5?, of which ca. 75% may be assigned to global ice-volume effect. The remainder of the range is shared by the effects of surface temperature variation, thermocline depth change (in the case of Pulleniatina, especially), and differential dissolution. Before 1 Ma, obliquity-related fluctuations dominate. The transition between obliquity- and eccentricity-dominated time occurs between ca. 1 and 0.7 Ma. It is marked by irregularities in phase relationships, the source of which is not clear. The age of the Brunhes/Matuyama boundary is determined as 794,000 yr by obliquity counting. However, an age of 830,000 yr also is compatible with the counts of both eccentricity and obliquity cycles. In the first case, Stage 19 (which contains the boundary) is coincident with the crest of the 19th obliquity cycle, setting the first crest downcore equal to zero, and counting backward (o19). In the second, Stage 19 coincides with o20. No evidence was found for fluctuations related to precession (23 and 19 k.y.) rising above the noise level, using plain Fourier expansion on the age model of the entire series. Detailed stratigraphic comparison with the Quaternary record of Hole 806B allows the recognition of major dissolution events (which increase the difference in delta18O values of G. sacculifer at the two sites). These occur at Stages 11-13, 16-17, and near 1.5 Ma (below o33).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sclerochronological records of interannual shell growth variability were established for eight modern shells (26 to 163 years of age) of the bivalve Arctica islandica, which were sampled at one site in the inner German Bight. The records indicate generally low synchrony between individuals. Spectral analysis of the whole 163-yr masterchronology indicated a cyclic pattern with a period of 5 and 7 years. The masterchronology correlated poorly to time series of environmental parameters over the last 90 years. High environmental variability in time and space of the dynamic and complex German Bight hydrographic system results in an extraordinarily high noise' level in the shell growth pattern of Arctica islandica.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sediments from Sites 1057 and 1061 of Ocean Drilling Program Leg 172 on the Blake Outer Ridge exhibit nearly isotropic magnetic susceptibility. Resolving the degree of anisotropy of magnetic susceptibility proved difficult in many samples because of the generally weak magnetic susceptibility of the sediments relative to the noise level of the susceptibility meters used. Lineation varies from 1.0 to 1.013 and foliation varies from 1.0 to 1.08 in the samples that pass rejection criteria. In general the foliation is better resolved than the lineation, particularly at Site 1061, where the foliation exhibits long-term trends that mimic the mean susceptibility. The changes in the foliation at this site are likely the result of changes in the magnetic mineralogy of the sediment. The poorly developed or absent magnetic fabric in the sediments overall can be attributed to high carbonate concentrations and to a circulation regime that was diffuse or with currents too weak to effectively align magnetic particles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Late Pleistocene sea level has been reconstructed from ocean sediment core data using a wide variety of proxies and models. However, the accuracy of individual reconstructions is limited by measurement error, local variations in salinity and temperature, and assumptions particular to each technique. Here we present a sea level stack (average) which increases the signal-to-noise ratio of individual reconstructions. Specifically, we perform principal component analysis (PCA) on seven records from 0-430 ka and five records from 0-798 ka. The first principal component, which we use as the stack, describes ~80 % of the variance in the data and is similar using either five or seven records. After scaling the stack based on Holocene and Last Glacial Maximum (LGM) sea level estimates, the stack agrees to within 5 m with isostatically adjusted coral sea level estimates for Marine Isotope Stages 5e and 11 (125 and 400 ka, respectively). When we compare the sea level stack with the d18O of benthic foraminifera, we find that sea level change accounts for about ~40 % of the total orbital-band variance in benthic d18O, compared to a 65 % contribution during the LGM-to-Holocene transition. Additionally, the second and third principal components of our analyses reflect differences between proxy records associated with spatial variations in the d18O of seawater.