191 resultados para nitrogen isotope

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Piston core M77/2-024-5 was retrieved during the M77/2 cruise of Research Vessel Meteor in December 2008. Total organic carbon concentrations were determined using a Carlo Erba Element Analyzer (NA1500). Prior to analysis carbon bound to carbonate minerals was removed by leaching the sediment with 1 M HCl. Bulk nitrogen isotope ratios were determined using a Carlo Erba Element Analyzer (NA1500) coupled to a DeltaPlusXL isotope ratio mass spectrometer. Major and trace metals were analyzed after microwave-assisted (CEM MARS-5) acid digestion (HCl, HNO3 and HF) by inductively coupled plasma optical emission spectrometry (aluminum, titanium and iron) (Teledyne Leeman Prodigy) and inductively coupled plasma mass spectrometry (molybdenum and uranium) (THERMO X-Series 2).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present new nitrogen isotope data from the water column and surface sediments for paleo-proxy validation collected along the Peruvian and Ecuadorian margins between 1°N and 18°S. Productivity proxies in the bulk sediment (organic carbon, total nitrogen, biogenic opal, C37 alkenone concentrations) and 15N/14N ratios were measured at more than 80 locations within and outside the present-day Peruvian oxygen minimum zone (OMZ). Microbial N-loss to N2 in subsurface waters under O2 deficient conditions leaves a characteristic 15N-enriched signal in underlying sediments. We find that phytoplankton nutrient uptake in surface waters within the high nutrient, low chlorophyll (HNLC) regions of the Peruvian upwelling system influences the sedimentary signal as well. How the d15Nsed signal is linked to these processes is studied by comparing core-top values to the 15N/14N of nitrate and nitrite (d15N[NOx]) in the upper 200 m of the water column. Between 1°N and 10°S, subsurface O2 is still high enough to suppress N-loss keeping d15NNOx values relatively low in the subsurface waters. However d15N[NOx] values increase toward the surface due to partial nitrate utilization in the photic zone in this HNLC portion of the system. d15N[sed] is consistently lower than the isotopic signature of upwelled [NO3]-, likely due to the corresponding production of 15N depleted organic matter. Between 10°S and 15°S, the current position of perennial upwelling cells, HNLC conditions are relaxed and biological production and near-surface phytoplankton uptake of upwelled [NO3]- are most intense. In addition, subsurface O2 concentration decreases to levels sufficient for N-loss by denitrification and/or anammox, resulting in elevated subsurface d15N[NOx] values in the source waters for coastal upwelling. Increasingly higher production southward is reflected by various productivity proxies in the sediments, while the north-south gradient towards stronger surface [NO3]- utilization and subsurface N-loss is reflected in the surface sediment 15N/14N ratios. South of 10°S, d15N[sed] is lower than maximum water column d15N[NOx] values most likely because only a portion of the upwelled water originates from the depths where highest d15N[NOx] values prevail. Though the enrichment of d15N[NOx] in the subsurface waters is unambiguously reflected in d15N[sed] values, the magnitude of d15N[sed] enrichment depends on both the depth of upwelled waters and high subsurface d15N[NOx] values produce by N-loss. Overall, the degree of N-loss influencing subsurface d15N[NOx] values, the depth origin of upwelled waters, and the degree of near-surface nitrate utilization under HNLC conditions should be considered for the interpretation of paleo d15N[sed] records from the Peruvian oxygen minimum zone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glacial-interglacial changes in sedimentary d15N over the last 120 kyr display a remarkably similar pattern in timing and amplitude in core records extending from the denitrification zone in the eastern tropical North Pacific (ETNP), where subsurface denitrification is active, to the Oregon margin, where no denitrification occurs today. Low d15N values (4-6 per mil) generally characterize glacial stages 2 and 4, and higher d15N values (7-10 per mil) are representative of the Holocene, millennial-scale periods within stage 3, and stage 5. The inferred synchroneity of d15N variations along the entire margin implies that the nitrate isotopic signal produced in the oxygen-poor subsurface waters in the ETNP is rapidly advected northward and recorded at sites far beyond the boundaries of the modern denitrification zone. Similar to d15N, primary production indicators (percent Corg, Ba/Al, and percent opal) show glacial-interglacial as well as millennial-scale variations along the NE Pacific margin, with higher primary production during warm periods. However, the relative phasing between d15N and paleoproduction tracers within individual records changes latitudinally. Whereas d15N and primary production vary approximately synchronously in the midlatitudes, production lags d15N in the ETNP by several kiloyears. This lag calls for a new understanding of the processes driving denitrification in the ETNP. We suggest that oxygen input by the Equatorial Undercurrent as well as local organic matter flux controls denitrification rates in the ETNP. Moreover, the differences in relative timing point to a time-transgressive development of upwelling-favorable winds along the NE Pacific margin after the last glaciation, with those in the north developing several kiloyears earlier.