110 resultados para nitrogen cycling

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold-water corals (CWC) are widely distributed around the world forming extensive reefs at par with tropical coral reefs. They are hotspots of biodiversity and organic matter processing in the world's deep oceans. Living in the dark they lack photosynthetic symbionts and are therefore considered to depend entirely on the limited flux of organic resources from the surface ocean. While symbiotic relations in tropical corals are known to be key to their survival in oligotrophic conditions, the full metabolic capacity of CWC has yet to be revealed. Here we report isotope tracer evidence for efficient nitrogen recycling, including nitrogen assimilation, regeneration, nitrification and denitrification. Moreover, we also discovered chemoautotrophy and nitrogen fixation in CWC and transfer of fixed nitrogen and inorganic carbon into bulk coral tissue and tissue compounds (fatty acids and amino acids). This unrecognized yet versatile metabolic machinery of CWC conserves precious limiting resources and provides access to new nitrogen and organic carbon resources that may be essential for CWC to survive in the resource-depleted dark ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen minimum zones are expanding globally, and at present account for around 20-40% of oceanic nitrogen loss. Heterotrophic denitrification and anammox-anaerobic ammonium oxidation with nitrite-are responsible for most nitrogen loss in these low-oxygen waters. Anammox is particularly significant in the eastern tropical South Pacific, one of the largest oxygen minimum zones globally. However, the factors that regulate anammox-driven nitrogen loss have remained unclear. Here, we present a comprehensive nitrogen budget for the eastern tropical South Pacific oxygen minimum zone, using measurements of nutrient concentrations, experimentally determined rates of nitrogen transformation and a numerical model of export production. Anammox was the dominant mode of nitrogen loss at the time of sampling. Rates of anammox, and related nitrogen transformations, were greatest in the productive shelf waters, and tailed off with distance from the coast. Within the shelf region, anammox activity peaked in both upper and bottom waters. Overall, rates of nitrogen transformation, including anammox, were strongly correlated with the export of organic matter. We suggest that the sinking of organic matter, and thus the release of ammonium into the water column, together with benthic ammonium release, fuel nitrogen loss from oxygen minimum zones.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

At two locations in the Atlantic Ocean (DSDP Sites 367 and 530) early to middle Cretaceous organic-carbon-rich beds (black shales) were found to have significantly lower delta15N values (lower 15N/14N ratios) than adjacent organic-carbon-poor beds (white limestones or green claystones). While these lithologies are of marine origin, the black strata in particular have delta15N values that are significantly lower than those previously found in the marine sediment record and most contemporary marine nitrogen pools. In contrast, black, organic-carbon-rich beds at a third site (DSDP Site 603) contain predominantly terrestrial organic matter and have C- and N-isotopic compositions similar to organic matter of modern terrestrial origin. The recurring 15N depletion in the marine-derived Cretaceous sequences prove that the nitrogen they contain is the end result of an episodic and atypical biogeochemistry. Existing isotopic and other data indicate that the low 15N relative abundance is the consequence of pelagic rather than post-depositional processes. Reduced ocean circulation, increased denitrification, and, hence, reduced euphoric zone nitrate availability may have led to Cretaceous phytoplankton assemblages that were periodically dominated by N2-fixing blue-green algae, a possible source of this sediment 15N-depletion. Lack of parallel isotopic shifts in Cretaceous terrestrially-derived nitrogen (Site 603) argues that the above change in nitrogen cycling during this period did not extend beyond the marine environment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Heterocystous cyanobacteria of the genus Nodularia form extensive blooms in the Baltic Sea and contribute substantially to the total annual primary production. Moreover, they dispense a large fraction of new nitrogen to the ecosystem when inorganic nitrogen concentration in summer is low. Thus, it is of ecological importance to know how Nodularia will react to future environmental changes, in particular to increasing carbon dioxide (CO2) concentrations and what consequences there might arise for cycling of organic matter in the Baltic Sea. Here, we determined carbon (C) and dinitrogen (N2) fixation rates, growth, elemental stoichiometry of particulate organic matter and nitrogen turnover in batch cultures of the heterocystous cyanobacterium Nodularia spumigena under low (median 315 µatm), mid (median 353 µatm), and high (median 548 µatm) CO2 concentrations. Our results demonstrate an overall stimulating effect of rising pCO2 on C and N2 fixation, as well as on cell growth. An increase in pCO2 during incubation days 0 to 9 resulted in an elevation in growth rate by 84 ± 38% (low vs. high pCO2) and 40 ± 25% (mid vs. high pCO2), as well as in N2 fixation by 93 ± 35% and 38 ± 1%, respectively. C uptake rates showed high standard deviations within treatments and in between sampling days. Nevertheless, C fixation in the high pCO2 treatment was elevated compared to the other two treatments by 97% (high vs. low) and 44% (high vs. mid) at day 0 and day 3, but this effect diminished afterwards. Additionally, elevation in carbon to nitrogen and nitrogen to phosphorus ratios of the particulate biomass formed (POC : POP and PON : POP) was observed at high pCO2. Our findings suggest that rising pCO2 stimulates the growth of heterocystous diazotrophic cyanobacteria, in a similar way as reported for the non-heterocystous diazotroph Trichodesmium. Implications for biogeochemical cycling and food web dynamics, as well as ecological and socio-economical aspects in the Baltic Sea are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of desiccation on photochemical processes and nitrogenase activity were evaluated in Nostoc commune s.l. colonies in situ from a wet thufur meadow at Petuniabukta, Billefjorden, Central Svalbard, during the 2009 arctic summer. The colonies were collected in the fully hydrated state, and were subjected to slow desiccation at ambient temperatures (5 - 8°C) and low light (30 - 80 µmol/m**2/s). For each colony the weight, area, photochemical performance, and nitrogenase activity were determined at the beginning, as well as on every day during the first four days of the experiment; thereafter, on every second day until desiccation was complete. The photochemical performance was evaluated from variable chlorophyll fluorescence parameters (FV/FM, Phi(PSII) , qP, and NPQ), and the nitrogenase activity was estimated by an acetylene-ethylene reduction assay. A significant decrease in the photochemically active area was recorded from the third day, when the colony had lost approximately 40% of its original weight indicating some changes in the extracellular matrix, and stopped on the 14th to 18th day. No effects of the desiccation on the main photochemical parameters (FV/FM, Phi(PSII), qP) were observed up to the sixth to eighth days of desiccation. Slightly lower values of FV/FM and Phi(PSII) recorded in fully-hydrated colonies could be caused by impaired diffusion of CO2 into cells. The steep reduction of photochemical activity occurred between the eighth and tenth day of the experiment, when the colony had lost approximately 80% of its fully-hydrated weight. The nitrogenase activity was highest on the first day, probably due to improved diffusion of N2 into cells, then declined, but was detectable until the sixth day of the experiment. Since Nostoc commune s.l. colonies were capable of photosynthesis and nitrogen fixation to the level of ca. 60% of its fully-hydrated weight, even partly-hydrated colonies contribute substantially to carbon and nitrogen cycling in the High Arctic wet meadow tundra ecosystem.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wet sedge tundra communities in the High Arctic are valuable sources of forage for several resident and migratory herbivores; however, the effects of grazing on these systems have been rarely studied. We simulated grazing in two wet sedge meadows at a site on Ellesmere Island that has not been affected by grazing. Over two summers, we clipped plots at four different frequencies and removed litter to assess effects on aboveground net primary production, availability of soil nitrogen, shoot concentrations of carbon and nitrogen, and soil temperature and moisture regimes. Available soil nitrate and ammonium were highest in plots with intermediate clipping frequencies. Shoot nitrogen concentrations were also greater at intermediate clipping frequencies in two of the four species studied. Aboveground net primary production decreased after clipping, regardless of frequency. Litter removal resulted in slightly increased soil moisture, but had no effect on aboveground net primary production. Soil temperature was not affected by any of our treatments. These results suggest that nitrogen cycling is stimulated by intermediate frequencies of simulated grazing, but clipping decreased aboveground net primary production in ungrazed high arctic wet sedge tundra.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We evaluated above- and belowground ecosystem changes in a 16 year, combined fertilization and warming experiment in a High Arctic tundra deciduous shrub heath (Alexandra Fiord, Ellesmere Island, NU, Canada). Soil emissions of the three key greenhouse gases (GHGs) (carbon dioxide, methane, and nitrous oxide) were measured in mid-July 2009 using soil respiration chambers attached to a FTIR system. Soil chemical and biochemical properties including Q10 values for CO2, CH4, and N2O, Bacteria and Archaea assemblage composition, and the diversity and prevalence of key nitrogen cycling genes including bacterial amoA, crenarchaeal amoA, and nosZ were measured. Warming and fertilization caused strong increases in plant community cover and height but had limited effects on GHG fluxes and no substantial effect on soil chemistry or biochemistry. Similarly, there was a surprising lack of directional shifts in the soil microbial community as a whole or any change at all in microbial functional groups associated with CH4 consumption or N2O cycling in any treatment. Thus, it appears that while warming and increased nutrient availability have strongly affected the plant community over the last 16 years, the belowground ecosystem has not yet responded. This resistance of the soil ecosystem has resulted in limited changes in GHG fluxes in response to the experimental treatments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The discovery that foraminifera are able to use nitrate instead of oxygen as energy source for their metabolism has challenged our understanding of nitrogen cycling in the ocean. It was evident before that only prokaryotes and fungi are able to denitrify. Rate estimates of foraminiferal denitrification were very sparse on a regional scale. Here, we present estimates of benthic foraminiferal denitrification rates from six stations at intermediate water depths in and below the Peruvian oxygen minimum zone (OMZ). Foraminiferal denitrification rates were calculated from abundance and assemblage composition of the total living fauna in both, surface and subsurface sediments, as well as from individual species specific denitrification rates. A comparison with total benthic denitrification rates as inferred by biogeochemical models revealed that benthic foraminifera account for the total denitrification on the shelf between 80 and 250 m water depth. They are still important denitrifiers in the centre of the OMZ around 320 m (29-56% of the benthic denitrification) but play only a minor role at the lower OMZ boundary and below the OMZ between 465 and 700 m (3-7% of total benthic denitrification). Furthermore, foraminiferal denitrification was compared to the total benthic nitrate loss measured during benthic chamber experiments. Foraminiferal denitrification contributes 1 to 50% to the total nitrate loss across a depth transect from 80 to 700 m, respectively. Flux rate estimates ranged from 0.01 to 1.3 mmol m?2 d?1. Furthermore we show that the amount of nitrate stored in living benthic foraminifera (3 to 705 µmol L?1) can be higher by three orders of magnitude as compared to the ambient pore waters in near surface sediments sustaining an important nitrate reservoir in Peruvian OMZ sediments. The substantial contribution of foraminiferal nitrate respiration to total benthic nitrate loss at the Peruvian margin, which is one of the main nitrate sink regions in the world oceans, underpins the importance of previously underestimated role of benthic foraminifera in global biochemical cycles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ocean acidification (OA), caused by the dissolution of increasing concentrations of atmospheric carbon dioxide (CO2) in seawater, is projected to cause significant changes to marine ecology and biogeochemistry. Potential impacts on the microbially driven cycling of nitrogen are of particular concern. Specifically, under seawater pH levels approximating future OA scenarios, rates of ammonia oxidation (the rate-limiting first step of the nitrification pathway) have been shown to dramatically decrease in seawater, but not in underlying sediments. However, no prior study has considered the interactive effects of microbial ammonia oxidation and macrofaunal bioturbation activity, which can enhance nitrogen transformation rates. Using experimental mesocosms, we investigated the responses to OA of ammonia oxidizing microorganisms inhabiting surface sediments and sediments within burrow walls of the mud shrimp Upogebia deltaura. Seawater was acidified to one of four target pH values (pHT 7.90, 7.70, 7.35 and 6.80) in comparison with a control (pHT 8.10). At pHT 8.10, ammonia oxidation rates in burrow wall sediments were, on average, fivefold greater than in surface sediments. However, at all acidified pH values (pH < = 7.90), ammonia oxidation rates in burrow sediments were significantly inhibited (by 79-97%; p < 0.01), whereas rates in surface sediments were unaffected. Both bacterial and archaeal abundances increased significantly as pHT declined; by contrast, relative abundances of bacterial and archaeal ammonia oxidation (amoA) genes did not vary. This research suggests that OA could cause substantial reductions in total benthic ammonia oxidation rates in coastal bioturbated sediments, leading to corresponding changes in coupled nitrogen cycling between the benthic and pelagic realms.