32 resultados para nickel-free

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Copper porphyrins have been recognized as natural constituents of marine sediments only within the past 5 years (Palmer and Baker, 1978, Science201, 49-51). In that report it was suggested that these pigments may derive from and be markers for oxidized terrestrial organic matter redeposited in the marine environment. In the present study we describe the distribution of copper porphyrins in sediments from several north Pacific and Gulf of California DSDP/IPQD sites (Legs 56,63,64). These allochthonous pigments have now been found to be accompanied by identical arrays of highly dealkylated nickel etioporphyrins. Evaluation of data from this and past studies clearly reveals that there is a strong carbon-number distribution similarity betweeen coincident Cu and Ni etioporphyrins. This homology match is taken as reflecting a common source for the tetrapyrrole ligands of this population of Cu and Ni chelates. Predepositional generation of these highly dealkylated etioporphyrins is concluded from the occurrence of these pigments in sediments continuing essentially all stages of in situ chlorophyll diagenesis (cf. Baker and Louda, 1983). That is, their presence is not regulated by the in situ diagenetic continuum. Thus, the highly dealkylated Cu and Ni etioporphyrins represent an 'allochthonous' background over which 'autochthonous' (viz. marine produced) chlorophyll derivatives are deposited and are undergoing in situ diagenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distribution of Fe, Mn, P, Ti, Cu, Ni, Co, V, Cr, W, Mo, and As in the surface sediment layer on the section from the Hawaiian Islands to the coast of Mexico (Mexico section) is studied. Contents of all studied elements increase from biogenic-terrigenous sediments off the coast of Mexico to pelagic red clays of the Northeast Basin, and more sharply for mobile elements - Mn, Mo, Cu, Ni, Co, and As. In near Hawaii sediments rich in coarsely fragmented volcanic-terrigenous and pyroclastic material of basaltic composition with high contents of Ti, Fe, V, Cr, W, and P, contents of these elements increase sharply, and contents of Mn, Mo, Ni, Co, and Cu for the same reason decrease sharply in comparison with red clay. Abnormally high contents of Mn, Mo, Cu, Ni, Co, and As in the upper layer of hemipelagic and transition sediments of the Mexico section result from diagenetic redistribution and their accumulation on the surface. Processes of diagenetic redistribution in hemipelagic and transition sediment mass of the Mexico section are more rapid than in similar sediments of the Japan section due lower sedimentation rates and higher initial concentrations of Mn. Basic similarity of element distribution regularities in sediments of Japan and Mexico sections is shown.