38 resultados para nickel(II) hexacyanoferrate

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemical and mineralogical compositions of ferromanganese oxide coatings on rocks dredged from the New England Seamounts, the Sierra Leone Rise and the Mid-Atlantic Ridge near the Equator have been determined in an investigation of regional differences in Atlantic ferromanganese deposits. Most encrustations are clearly of hydrogenous origin, consisting mainly of todorokite and delta MnO2, but several recovered from the equatorial fracture zones may be hydrothermal accumulations. Differences in the chemistry of the water column and in growth rates of the ferromanganese coatings may be important in producing this regional contrast in composition. Fine-scale changes in element abundances within the encrustations indicate that the nature of the substrate has little influence on compositional variations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results of studies of hydrothermal sulfide-sulfate rocks occurring in the Atlantis II Deep of the Red Sea are reported in the paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thirteen sediment samples, including calcareous ooze, sandy clay, volcanic sand, gravel, and volcanic breccia, from Ocean Drilling Program (ODP) Sites 732B, 734B, 734G and Conrad Cruise 27-9, Station 17, were examined. Contents of major and trace elements were determined using XRF or ICP (on samples <0.5 g). Determinations of rare earth elements (REE) were performed using ICP-MS. Mineralogy was determined using XRD. On the basis of the samples studied, the sediments accumulating in the Atlantis II Fracture Zone are characterized by generally high MgO, Cr, and Ni contents compared with other deep-sea sediments. A variety of sources are reflected in the mineralogy and geochemistry of these sediments. Serpentine, brucite, magnetite, and high MgO, Cr, and Ni contents indicate derivation from ultramafic basement. The occurrence of albite, analcime, primary mafic minerals, and smectite/chlorite in some samples, coupled with high SiO2, Al2O3, TiO2, Fe2O3, V, and Y indicate contribution from basaltic basement. A third major sediment source is characterized as biogenic material and is reflected primarily in the presence of carbonate minerals, and high CaO, Sr, Pb, and Zn in certain samples. Kaolinite, illite, quartz, and some chlorite are most likely derived from continental areas or other parts of the ocean by long-distance sediment transport in surface or other ocean currents. Proportions of source materials in the sediments reflect the thickness of the sediment cover, slope of the seafloor, and the nature of and proximity to basement lithologies. REE values are low compared to other deep-sea sediments and indicate no evidence of hydrothermal activity in the Atlantis II Fracture Zone sediments. This is supported by major- and trace-element data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemical analyzes show that interstitial waters from ore-bearing bottom sediments of the Atlantis II and Discovery Deeps are enriched in Fe, Mn, Cu, Ni, Co, Zn, Pb, and Cd compared to sea water. Enrichment factors of these trace elements in the interstitial waters of the Atlantis II Deep relative to the sea water vary within the following ranges: for Fe from 100 to 7000, for Mn from 19047 to 32738, for Zn from 500 to 1600, for Pb from 78333 to 190000, for Cu from 107 to 654. Comparison of average weighted concentrations of Fe, Mn, Zn, Pb, Cu, Ni in the bottom sediments and the interstitial waters of the Atlantis II Deep indicates common regularities and good relationship in distribution of these elements along sediment cores. Differences in concentrations and distribution of the studied trace elements in the interstitial waters of the Atlantis II and Discovery Deeps result from different chemical compositions of hydrothermal fluids entering these deeps.