14 resultados para neural network technique
em Publishing Network for Geoscientific
Resumo:
In this paper we present a paleoceanographic reconstruction of the southwestern South Atlantic for the past 13 kyr based on faunal and isotopic analysis of planktonic foraminifera from a high-resolution core retrieved at the South Brazil Bight continental slope. Our record indicates that oceanographic changes in the southwestern South Atlantic during the onset of the Holocene were comparable in strength to those that occurred during the Younger Dryas. Full interglacial conditions started abruptly after 8.2 kyr BP with a sharp change in faunal composition and surface hydrography (SST and SSS). Part of the observed events may be explained in terms of changes in thermohaline circulation while the other part suggests a dominant role of winds. Our data indicate that during the Early Holocene upwelling was significantly strengthened in the South Brazil Bight promoting high productivity and preventing the establishment of the typically interglacial menardiiform species. In general terms, oceanographic changes recorded by core KF02 occurred in synchrony with Antarctica's climate.
Resumo:
Early and Mid-Pleistocene climate, ocean hydrography and ice sheet dynamics have been reconstructed using a high-resolution data set (planktonic and benthic d18O time series, faunal-based sea surface temperature (SST) reconstructions and ice-rafted debris (IRD)) record from a high-deposition-rate sedimentary succession recovered at the Gardar Drift formation in the subpolar North Atlantic (Integrated Ocean Drilling Program Leg 306, Site U1314). Our sedimentary record spans from late in Marine Isotope Stage (MIS) 31 to MIS 19 (1069-779 ka). Different trends of the benthic and planktonic oxygen isotopes, SST and IRD records before and after MIS 25 (~940 ka) evidence the large increase in Northern Hemisphere ice-volume, linked to the cyclicity change from the 41-kyr to the 100-kyr that occurred during the Mid-Pleistocene Transition (MPT). Beside longer glacial-interglacial (G-IG) variability, millennial-scale fluctuations were a pervasive feature across our study. Negative excursions in the benthic d18O time series observed at the times of IRD events may be related to glacio-eustatic changes due to ice sheets retreats and/or to changes in deep hydrography. Time series analysis on surface water proxies (IRD, SST and planktonic d18O) of the interval between MIS 31 to MIS 26 shows that the timing of these millennial-scale climate changes are related to half-precessional (10 kyr) components of the insolation forcing, which are interpreted as cross-equatorial heat transport toward high latitudes during both equinox insolation maxima at the equator.
Resumo:
Planktonic foraminiferal assemblages and artificial neural network estimates of sea-surface temperature (SST) at ODP Site 1123 (41°47.2'S, 171°29.9'W; 3290 m deep), east of New Zealand, reveal a high-resolution history of glacial-interglacial (G-I) variability at the Subtropical Front (STF) for the last 1.2 million years, including the Mid-Pleistocene climate transition (MPT). Most G-I cycles of ~100 kyr duration have short periods of cold glacial and warm deglacial climate centred on glacial terminations, followed by long temperate interglacial periods. During glacial-deglacial transitions, maximum abundances of subantarctic and subtropical taxa coincide with SST minima and maxima, and lead ice volume by up to 8 kyrs. Such relationships reflect the competing influence of subantarctic and subtropical surface inflows during glacial and deglacial periods, respectively, suggesting alternate polar and tropical forcing of southern mid-latitude ocean climate. The lead of SSTs and subtropical inflow over ice volume points to tropical forcing of southern mid-latitude ocean-climate during deglacial warming. This contrasts with the established hypothesis that southern hemisphere ocean climate is driven by the influence of continental glaciations. Based on wholesale changes in subantarctic and subtropical faunas, the last 1.2 million years are subdivided into 4-distinct periods of ocean climate. 1) The pre-MPT (1185-870 ka) has high amplitude 41-kyr fluctuations in SST, superimposed on a general cooling trend and heightened productivity, reflecting long-term strengthening of subantarctic inflow under an invigorated Antarctic Circumpolar Current. 2) The early MPT (870-620 ka) is marked by abrupt warming during MIS 21, followed by a period of unstable periodicities within the 40-100 kyr orbital bands, decreasing SST amplitudes, and long intervals of temperate interglacial climate punctuated by short glacial and deglacial phases, reflecting lower meridional temperature gradients. 3) The late MPT (620-435 ka) encompasses an abrupt decrease in the subantarctic inflow during MIS 15, followed by a period of warm equable climate. Poorly defined, low amplitude G-I variations in SSTs during this interval are consistent with a relatively stable STF and evenly balanced subantarctic and subtropical inflows, possibly in response to smaller, less dynamic polar icesheets. 4) The post-MPT (435-0 ka) is marked by a major climatic deterioration during MIS 12, and a return to higher amplitude 100 kyr-frequency SST variations, superimposed on a long term trend towards cooler SSTs and increased mixed-layer productivity as the subantarctic inflow strengthened and polar icesheets expanded.
Resumo:
IMAGES core MD01-2416 (51°N, 168°E) provides the first centennial-scale multiproxy record of Holocene variation in North Pacific sea-surface temperature (SST), salinity, and biogenic productivity. Our results reveal a gradual decrease in subarctic SST by 3-5 °C from 11.1 to 4.2 ka and a stepwise long-term decrease in sea surface salinity (SSS) by 2-3 p.s.u. Early Holocene SSS were as high as in the modern subtropical Pacific. The steep halocline and stratification that is characteristic of the present-day subarctic North Pacific surface ocean is a fairly recent feature, developed as a product of mid-Holocene environmental change. High SSS matched a salient productivity maximum of biogenic opal during Bølling-to-Early Holocene times, reaching levels similar to those observed during preglacial times in the warm mid-Pliocene prior to 2.73 Ma. Similar productivity spikes marked every preceding glacial termination of the last 800 ka, indicating recurrent short-term events of mid-Pliocene-style intense upwelling of nutrient-rich Pacific Deepwater in the Pleistocene. Such events led to a repeated exposure of CO2-rich deepwater at the ocean surface facilitating a transient CO2 release to the atmosphere, but the timing and duration of these events repudiate a long-term influence of the subarctic North Pacific on global atmospheric CO2 concentration.
Resumo:
In the western Arabian Sea (WAS), the highest seasonal sea surface temperature (SST) difference presently occurs between May and August. In order to gain an understanding on how monsoonal upwelling modulates the SST difference between these two months, we have computed SST for the months of May and August based on census counts of planktonic foraminifers by using the artificial neural network (ANN) technique. The SST difference between May and August exhibits three distinct phases: i) a moderate SST difference in the late Holocene (0-3.5 ka) is attributable to intense upwelling during August, ii) a minimum SST difference from 4 to 12 ka is due to weak upwelling during the month of August, and iii) the highest SST difference during the last glacial interval (19 to 22 ka) with high Globigerina bulloides % could have been caused by the occurrence of a prolonged upwelling season (from May through July) and maximum difference in the incoming solar radiation between May and August. Overall, variations in the SST difference between May and August show that the timing of intense upwelling in the Western Arabian Sea over the last 22 kyr has been variable over the months of June, July and August.
Resumo:
There is much uncertainty surrounding the mechanisms that forced the abrupt climate fluctuations found in many palaeoclimate records during Marine Isotope Stage (MIS)-3. One of the processes thought to be involved in these events is the Atlantic Meridional Overturning Circulation (MOC), which exhibited large changes in its dominant mode throughout the last glacial period. Giant piston core MD95-2006 from the northeast Atlantic Ocean records a suite of palaeoceanographic proxies related to the activity of both surface and deep water masses through a period of MIS-3 when abrupt climate fluctuations were extremely pronounced. A two-stage progression of surface water warming during interstadial warm events is proposed, with initial warming related to the northward advection of a thin warm surface layer within the North Atlantic Current, which only extended into deeper surface layers as the interstadial progressed. Benthic foraminifera isotope data also show millennial-scale oscillations but of a different structure to the abrupt surface water changes. These changes are argued to partly be related to the influence of low-salinity deepwater brines. The influence of deepwater brines over the site of MD95-2006 reached a maximum at times of rapid warming of surface waters. This observation supports the suggestion that brine formation may have helped to destabilize the accumulation of warm, saline surface waters at low latitudes, helping to force the MOC into a warm mode of operation. The contribution of deepwater brines relative to other mechanisms proposed to alter the state of the MOC needs to be examined further in future studies.