22 resultados para multistage ultrafiltration

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composition of ore minerals in MAR sulflde occurrences related to ultramaflc rocks was studied using methods of mineragraphy, electron microscopy, microprobe analysis, and X-ray analysis. Objects are located at various levels of maturity of sulflde mounds owing to differences in age, duration and degree of activity of the following hydrothermal systems: generally inactive Logatchev-1 field (up to 66.5 ka old), inactive Logatchev-2 field (3.9 ka), and generally active Rainbow field (up to 23 ka). Relative to MAR submarine ore occurrences in the basalt substrate, mineralization in the hydrothermal fields mentioned above is characterized by high contents of Au, Cd, Co, and Ni, along with presence of accessory minerals of Co and Ni. The studied mounds differ in quantitative ratios of major minerals and structural-textural features of ores that suggest their transformation. Ores in the Logatchev-1 field are characterized by the highest Cu content and development of a wide range of multistage contrast exsolution structures of isocubanite and bornite. In the Logatchev-2 field, sphalerite-chalcopyrite and gold-arsenic exsolution structures are present, but isocubanite exsolution structures are less diverse and contrast. The Rainbow field is marked by presence of homogenous isocubanite and the subordinate development of exsolution structures. The authors have identified four new phases in the Cu-Fe-S system. Phases X and Y (close to chalcopyrite and isocubanite, respectively) make up lamellae among isocubanite exsolution products in the Logatchev-1 and Logatchev-2 fields. Phase Y includes homogenous zones in zonal chimneys of the Rainbow field. Phases A and B formed in the orange bornite domain at low-temperature alteration of chalcopyrite in the Logatchev-1 field. Mineral assemblages of the Cu-S system are most abundant and diverse in the Logatchev-1 field, but their development is minimal in the Logatchev-2 field where mainly Cu-poor sulfides of the geerite-covellite series have been identified. Specific features of mineral assemblages mentioned above reflect the maturity grade of sulfide mounds and can serve as indicators of maturity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sixty-three samples representing 379 m of sheeted dikes from Deep Sea Drilling Project/Ocean Drilling Program Site 504B have been analyzed for major and selected trace elements by X-ray fluorescence. The samples range from microcrystalline aphyric basalts to moderately phyric (2%-10% phenocrysts) diabase that are typically multiply saturated with plagioclase, olivine, and clinopyroxene, in order of relative abundance. All analyzed samples are classified as Group D compositions with moderate to slightly elevated compatible elements (MgÆ-value = 0.65% ± 0.03%; Al2O3 = 15.5% ± 0.8%; CaO = 13.0% ± 0.3%; Ni = 114 ± 29 ppm), and unusually depleted levels of moderate to highly incompatible elements (Nb < 1 ppm; Zr = 44 ± 7 ppm; Rb < 0.5 ppm; Ba ~ 1 ppm; P2O5 = 0.07% ± 0.02%). These compositions are consistent with a multistage melting of a normal ocean ridge basaltic mantle source followed by extensive fractionation of olivine, plagioclase, and clinopyroxene. Leg 140 aphyric to sparsely phyric (0%-2% phenocrysts) basalts and diabases are compositionally indistinguishable from similarly phyric samples at higher levels in the hole. An examination of the entire crustal section, from the overlying volcanics through the sheeted dikes observed in Leg 140, reveals no significant trends indicating the enrichment or depletion of Costa Rica Rift Zone source magmas over time. Similarly, significant trends toward increased or decreased differentiation cannot be identified, although compositional patterns reflecting variable amounts of phenocryst addition are apparent at various depths. Below ? 1700 mbsf to the bottom of the Leg 140 section, there is a broadly systematic pattern of Zn depletion with depth, the result of high-temperature hydrothermal leaching. This zone of depletion is thought to be a significant source of Zn for the hydrothermal fluids depositing metal sulfides at ridge-crest hydrothermal vents and the sulfide-mineralization zone, located in the transition between pillow lavas and sheeted dikes. Localized zones of intense alteration (60%-95% recrystallization) are present on a centimeter to meter scale in many lithologic units. Within these zones, normally immobile elements Ti, Zr, Y, and rare-earth elements are strongly depleted compared with "fresher" samples centimeters away. The extent of compositional variability of these elements tends to obscure primary igneous trends if the highly altered samples are not identified or removed. At levels up to 40% (or possibly 60%) recrystallization, Ti, Zr, and Y retain their primary signatures. Although the mechanisms are unclear, it is possible that these intense alteration zones are a source of Y and rare-earth elements for the typically rare-earth-element-enriched hydrothermal vent fluids of mid-ocean ridges.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Detailed comparison of mineralogy, and major and trace geochemistry are presented for the modern Lau Basin spreading centers, the Sites 834-839 lavas, the modern Tonga-Kermadec arc volcanics, the northern Tongan boninites, and the Lau Ridge volcanics. The data clearly confirm the variations from near normal mid-ocean-ridge basalt (N-MORB) chemistries (e.g., Site 834, Central Lau Spreading Center) to strongly arc-like (e.g., Site 839, Valu Fa), the latter closely comparable to the modern arc volcanoes. Sites 835 and 836 and the East Lau Spreading Center represent transitional chemistries. Bulk compositions range from andesitic to basaltic, but lavas from Sites 834 and 836 and the Central Lau Spreading Center extend toward more silica-undersaturated compositions. The Valu Fa and modern Tonga-Kermadec arc lavas, in contrast, are dominated by basaltic andesites. The phenocryst and groundmass mineralogies show the strong arc-like affinities of the Site 839 lavas, which are also characterized by the existence of very magnesian olivines (up to Fo90-92) and Cr-rich spinels in Units 3 and 6, and highly anorthitic plagioclases in Units 2 and 9. The regional patterns of mineralogical and geochemical variations are interpreted in terms of two competing processes affecting the inferred magma sources: (1) mantle depletion processes, caused by previous melt extractions linked to backarc magmatism, and (2) enrichment in large-ion-lithophile elements, caused by a subduction contribution. A general trend of increasing depletion is inferred both eastward across the Lau Basin toward the modern arc, and northward along the Tongan (and Kermadec) Arc. Numerical modeling suggests that multistage magma extraction can explain the low abundances (relative to N-MORB) of elements such as Nb, Ta, and Ti, known to be characteristic of island arc magmas. It is further suggested that a subduction jump following prolonged slab rollback could account for the initiation of the Lau Basin opening, plausibly allowing a later influx of new mantle, as required by the recognition of a two-stage opening of the Lau Basin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The opaque mineralogy and the contents and isotope compositions of sulfur in serpentinized peridotites from the MARK (Mid-Atlantic Ridge, Kane Fracture Zone) area were examined to understand the conditions of serpentinization and evaluate this process as a sink for seawater sulfur. The serpentinites contain a sulfur-rich secondary mineral assemblage and have high sulfur contents (up to 1 wt.%) and elevated d34S_sulfide (3.7 to 12.7?). Geochemical reaction modeling indicates that seawater-peridotite interaction at 300 to 400°C alone cannot account for both the high sulfur contents and high d34S_sulfide. These require a multistage reaction with leaching of sulfide from subjacent gabbro during higher temperature (~400°C) reactions with seawater and subsequent deposition of sulfide during serpentinization of peridotite at ~300°C. Serpentinization produces highly reducing conditions and significant amounts of H2 and results in the partial reduction of seawater carbonate to methane. The latter is documented by formation of carbonate veins enriched in 13C (up to 4.5?) at temperatures above 250°C. Although different processes produce variable sulfur isotope effects in other oceanic serpentinites, sulfur is consistently added to abyssal peridotites during serpentinization. Data for serpentinites drilled and dredged from oceanic crust and from ophiolites indicate that oceanic peridotites are a sink for up to 0.4 to 6.0 mln ton seawater S per year. This is comparable to sulfur exchange that occurs in hydrothermal systems in mafic oceanic crust at midocean ridges and on ridge flanks and amounts to 2 to 30% of the riverine sulfate source and sedimentary sulfide sink in the oceans. The high concentrations and modified isotope compositions of sulfur in serpentinites could be important for mantle metasomatism during subduction of crust generated at slow spreading rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mineral and chemical compositions of highly ferruginous layered silicates (HLS) of glauconite sands occurred on the East Korean Rise outside volcanic structures and on an unnamed volcano and the Chentsov Volcano have been studied. The use of cluster and discriminant analyses has resulted to more objectively distinguished groups among HLS, and the use of factor analysis - to illustrate correlations between chemical elements in different groups. It has been found that green mineral assemblages of the East Korean Rise are heterogeneous in terms of morphology, composition and origin, and their formation is a complex multistage process including both neoformation and degradation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultrafiltration with tagged atoms was used to study physicochemical states (dissolved, colloidal, suspended) of Mn, Co, Ni, Zn, and Ce in bottom and interstitial waters collected in two areas of the Pacific Ocean with Fe-Mn nodules of different size, shape, structure and origin in different abundances. Use of filters with pore diameter of 0.05 ?m allowed to identify colloidal forms of the metals in bottom sediments and interstitial waters. It was demonstrated experimentally that differences in physicochemical situation in the studied areas could result in formation of nodules by different mechanisms, producing characteristic differences that were observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The book provides an overview of recent data on processes of dispersion and concentration of phosphorus in marine sedimentation. Distribution, chemical and mineral compositions, structure and age of phosphorites occurring on the floor are described. Phosphorites are one of potential mineral resources of the World Ocean. A scheme of multistage-oceanic phosphorite formation is motivated. Modern and pre-Quaternary phosphorite formations in the ocean are paralleled.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Major and rare earth element (REE) data for basalts from Holes 483, 483B, and 485A of DSDP Leg 65, East Pacific Rise, mouth of the Gulf of California, support a simple fractional crystallization model for the genesis of rocks from this suite. The petrography and mineral chemistry (presented in detail elsewhere) provide no evidence for magma mixing, but rather a simple multistage cooling process. Based on its lowest TiO2 content (0.88%), FeO*/MgO ratio (0.95 with total Fe as FeO), and Mg# (100 Mg/Mg + Fe" = 70), sample 483-17-2-(78-83) has been selected as the most primitive primary magma of the samples analyzed. This is supported by the REE data which show this sample has the lowest total REE content, a La/Sm_cn (chondrite-normalized) = 0.36, and Eu/Sm_cn = 1.05. Because other samples analyzed have higher SiO2, lower Mg#, and a negative Eu anomaly (Eu/Sm_cn as low as 0.89), they are most likely derivative magmas. Wright-Doherty and trace element modelling support fractional crystallization of 14.1% plagioclase (An88), 6.7% olivine (Fo86), and 4.7% clinopyroxene (Wo41En49Fs10) from 483-17-2-(78-83) to form the least differentiated sample with Mg# = 63. The La/Sm_cn of this derivative magma is almost identical to the parent magma (0.35 to 0.36), but the other samples have higher La/Sm_cn (0.45 to 0.51), more total REE, and lower Mg# (60 to 56). Both Wright-Doherty and trace element modelling indicate that the primary magma chosen cannot produce these more evolved samples. For the major elements, the TiO2 and P2O5 are too low in the calculated versus the observed (1.38 to 1.90; 0.11 to 0.17, respectively, for example). Rayleigh fractionation calculates a lower La/Sm_cn and requires about 60% crystal removal versus 40% for the Wright-Doherty. These more evolved samples must be derived from a parent magma different from the one selected here and, unfortunately, not sampled in this study. A magma formed by a smaller degree of partial melting with slightly more residual clinopyroxene left in the mantle than for sample 483-17-2-(78-83) is required.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atomic absorption spectroscopy is used to determine concentration of gold in waters of the Bering Sea and North Pacific. Distributions of gold and organic carbon in colloidal and "dissolved" fractions separated by ultrafiltration through Vladipor filters are determined. Direct evidence of gold association with colloidal matter of sea water is presented and concentrations of gold in various fractions of colloidal solutions are determined. The most important forms of occurrence of colloidal gold prove to be high molecular weight fractions, and the most important form of colloidal organic carbon (Corg) is low molecular fraction. Dissolved forms are important in the balance of gold and Corg. Variations in forms of occurrence of gold and Corg in vertical profiles are described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemical compositions and 1-atm. phase relations were determined for basalts drilled from Holes 501, 504A, 504B, 505, and 505B on Legs 68, 69, and 70 of the Deep Sea Drilling Project. Chemical, experimental, and petrographic data indicate that these basalts are moderately evolved (Mg' values from 0.60 to 0.70), with olivine plus Plagioclase and often clinopyroxene on the liquidus. Chemical stratigraphy was used to infer that sequential influxes of magma into a differentiating magma chamber or separate flows from different magma chambers or both had occurred. Two major types of basalt were found to be inter layered: Group M, a rarely occurring type with major element chemistry and magmaphile element abundances within the range of the majority of ocean-floor basalts (TiO2 = 1.3%, Na2O 2.5%, Zr = 103 ppm, Nb = 2.5 ppm, and Y = 31 ppm); and Group D, a highly unusual series of basalt compositions that exhibit much lower magmaphile element abundances (TiO2 = 0.75-1.2%, Na2O = 1.7-2.3%, Zr = 34-60 ppm, Nb = 0.5-1.2 ppm, and Y = 16-27 ppm). The liquidus temperatures of the Group D basalts are high (1230- 1260°C) compared with those of other ocean-floor basalts of similar Mg' values. They have high CaO/Na2O ratios (5-8) and are calculated to be in equilibrium with unusually calcic Plagioclase (An78-84). The two basalt groups cannot be related by fractionation processes. However, constant Zr/Nb ratios (>40) for the two groups suggest a single mantle source, with differences in magmaphile element abundances and other element ratios (e.g., Zr/Ti, Zr/Y, Ce/Yb) arising through sequential melting of the same source. Magmas similar to Group D, if mixed with more typical mid-ocean-ridge basalt (MORB) magmas in shallow magma chambers, could provide a source for the highly calcic Plagioclase phenocrysts that appear in more common (i.e., less depleted) phyric ocean-floor basalts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Members of the marine dinoflagellate genus Alexandrium are known to exude allelochemicals, unrelated to well-known neurotoxins (PSP-toxins, spirolides), with negative effects on other phytoplankton and marine grazers. Physico/chemical characterization of extracellular lytic compounds of A. tamarense, quantified by Rhodomonas salina bioassay, showed that the lytic activity, and hence presumably the compounds were stable over wide ranges of temperatures and pH and were refractory to bacterial degradation. Two distinct lytic fractions were collected by reversed-phase solid-phase extraction. The more hydrophilic fraction accounted for about 2% of the whole lytic activity of the A. tamarense culture supernatant, while the less hydrophilic one accounted for about 98% of activity. Although temporal stability of the compounds is high, substantial losses were evident during purification. Lytic activity was best removed from aqueous phase with chloroform-methanol (3:1). A "pseudo-loss" of lytic activity in undisturbed and low-concentrated samples and high activity of an emulsion between aqueous and n-hexane phase after liquid-liquid partition are strong evidence for the presence of amphipathic compounds. Lytic activity in the early fraction of gel permeation chromatography and lack of activity after 5 kD ultrafiltration indicate that the lytic agents form large aggregates or macromolecular complexes.