4 resultados para multiple quantum wells

em Publishing Network for Geoscientific


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The experience from CO2 injection at pilot projects (Frio, Ketzin, Nagaoka, US Regional Partnerships) and existing commercial operations (Sleipner, Snøhvit, In Salah, acid-gas injection) demonstrates that CO2 geological storage in saline aquifers is technologically feasible. Monitoring and verification technologies have been tested and demonstrated to detect and track the CO2 plume in different subsurface geological environments. By the end of 2008, approximately 20 Mt of CO2 had been successfully injected into saline aquifers by existing operations. Currently, the highest injection rate and total storage volume for a single storage operation are approximately 1 Mt CO2/year and 25 Mt, respectively. If carbon capture and storage (CCS) is to be an effective option for decreasing greenhouse gas emissions, commercial-scale storage operations will require orders of magnitude larger storage capacity than accessed by the existing sites. As a result, new demonstration projects will need to develop and test injection strategies that consider multiple injection wells and the optimisation of the usage of storage space. To accelerate large-scale CCS deployment, demonstration projects should be selected that can be readily employed for commercial use; i.e. projects that fully integrate the capture, transport and storage processes at an industrial emissions source.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new microtiter-plate dilution method was applied during the expedition ANTARKTIS-XI/2 with RV Polarstern to determine the distribution of copiotrophic and oligotrophic bacteria in the water columns at polar fronts. Twofold serial dilutions were performed with an eight-channel Electrapette in 96-wells plates by mixing 150 µl of seawater with 150 µl of copiotrophic or olitrophic Trypticase-Broth, three times per well. After incubation of about 6 month at 2 °C, turbidities were measured with an eight-channel photometer at 405 nm and combinations of positive test results for three consecutive dilutions chosen and compared with a Most Probable Number table, calculated for 8 replicates and twofold serial dilutions. Densities of 12 to 661 cells/ml for copiotrophs, and 1 to 39 cells/ml for oligotrophs were found. Colony Forming Units on copiotrophic Trypticase-Agar were between 6 and 847 cells/ml, which is in the same range as determined with the MPN method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of elevated CO2 and temperature on photosynthesis and calcification in the calcifying algae Halimeda macroloba and Halimeda cylindracea and the symbiont-bearing benthic foraminifera Marginopora vertebralis were investigated through exposure to a combination of four temperatures (28°C, 30°C, 32°C, and 34°C) and four CO2 levels (39, 61, 101, and 203 Pa; pH 8.1, 7.9, 7.7, and 7.4, respectively). Elevated CO2 caused a profound decline in photosynthetic efficiency (FV : FM), calcification, and growth in all species. After five weeks at 34°C under all CO2 levels, all species died. Chlorophyll (Chl) a and b concentration in Halimeda spp. significantly decreased in 203 Pa, 32°C and 34°C treatments, but Chl a and Chl c2 concentration in M. vertebralis was not affected by temperature alone, with significant declines in the 61, 101, and 203 Pa treatments at 28°C. Significant decreases in FV : FM in all species were found after 5 weeks of exposure to elevated CO2 (203 Pa in all temperature treatments) and temperature (32°C and 34°C in all pH treatments). The rate of oxygen production declined at 61, 101, and 203 Pa in all temperature treatments for all species. The elevated CO2 and temperature treatments greatly reduced calcification (growth and crystal size) in M. vertebralis and, to a lesser extent, in Halimeda spp. These findings indicate that 32°C and 101 Pa CO2, are the upper limits for survival of these species on Heron Island reef, and we conclude that these species will be highly vulnerable to the predicted future climate change scenarios of elevated temperature and ocean acidification.