4 resultados para morphometric characteristics
em Publishing Network for Geoscientific
Resumo:
The genus Hinia is divided in 4 subgenera; other subgenera are not represented in the area studied. It was possible to find criteria for a better discrimination of the highly variable species H. (Hinia) schlotheimi and H. (Hinia) turbinella. The species "fuchsi" has been placed in the synonymy of H. (Hinia) turbinella. The species H. (Hinia) schlotheimi (BEYRICH) and H. (Telasco) schroederi (KAUTSKY) have been united under the name H. (Hinia) schlotheimi. The easily distinguishable species H. (Tritonella) tenuistriata and H. (Hinia) sulcata belong to two different genera. H. (Tritonella) cimbrica andersoni of the Viol- and Katzheide-Beds (Reinbek-stage) is separable from the population found in the Hemmoor-stage, it turned out to be a valuable guide subspecies for the Reinbek-stage. The species H. (Tritonella) serraticosta, H. (Tritonella) catulli, H. (Hinia) holsatica, and H. (Telasco) syltensis are all similar in respect to shape and ornamentation. Criteria have been found for a better discrimination of these species. The species contabulata, effusa and seminodifera described by SPEYER (1864), turned out to be contogenetic stages of H. (Tritonella) pygmaea. H. (Tritonella) cavata, previously described from the Tertiary of the North sea area, was proven to be absent from the area investigated. The forms described under that name, belong to H. (Tritonella) woodwardi.
Resumo:
Data from deep sea drilling, linear magnetic anomalies and bathymetric measurements together with age and morphometric characteristics of seamounts have been used to construct a paleobathymetric map of the oceans 35 million years ago. A brief analysis of these results is presented.
Resumo:
During June-August 1970 geologic investigations were carried out to the west of the Cape Verde Islands. One result of these investigations was a discovery of a new region of distribution of iron-manganese nodules. Data on chemical analysis of the nodules and their morphometric characteristics are presented in this paper. The report is illustrated by bottom-relief profiles, underwater photographs, and tables.
Resumo:
A morphometric analysis was performed for the late Middle Miocene bivalve species lineage of Polititapes tricuspis (Eichwald, 1829) (Veneridae: Tapetini). Specimens from various localities grouped into two stratigraphically successive biozones, i.e. the upper Ervilia Zone and the Sarmatimactra Zone, were investigated using a multi-method approach. A Generalized Procrustes Analysis was computed for fifteen landmarks, covering characteristics of the hinge, muscle scars, and pallial line. The shell outline was separately quantified by applying the Fast Fourier Transform, which redraws the outline by fitting in a combination of trigonometric curves. Shell size was calculated as centroid size from the landmark configuration. Shell thickness, as not covered by either analysis, was additionally measured at the centroid. The analyses showed significant phenotypic differentiation between specimens from the two biozones. The bivalves become distinctly larger and thicker over geological time and develop circular shells with stronger cardinal teeth and a deeper pallial sinus. Data on the paleoenvironmental changes in the late Middle Miocene Central Paratethys Sea suggest the phenotypic shifts to be functional adaptations. The typical habitats for Polititapes changed to extensive, very shallow shores exposed to high wave action and tidal activity. Caused by the growing need for higher mechanical stability, the bivalves produced larger and thicker shells with stronger cardinal teeth. The latter are additionally shifted towards the hinge center to compensate for the lacking lateral teeth and improve stability. The deepening pallial sinus is related to a deeper burrowing habit, which is considered to impede being washed out in the new high-energy settings.