9 resultados para more individuals hypothesis
em Publishing Network for Geoscientific
Resumo:
By means of spectrographic analysis 96 samples of marine sediments were analyzed quantitatively for V, Ti, Zr, Co, Ni, Sc, Cr, and La, and semi-quantitatively for Ba and Sr. Ca has been estimated by visual comparison of spectrographic plates, and several Fe values have also been determined in the same way. Geographically 40 of these samples are from the Pacific Ocean basin, one of which is a manganese nodule, 21 from the Gulf of Mexico, 11 from Atchafalaya Bay, 8 from American Devonian to Miocene sedimentary rocks, 4 from the Mississippi Delta, 3 from the San Diego trough, 3 from off Grand Isle, 3 from Lake Pontchartrain, from Bay Rambour, 1 from Laguna Madre off the Texas coast, and 1 from the Guadalupe River, Texas. The afore-mentioned elements were sought using PdCl2 as an internal standard, after the method developed by Ahrens (1950) and his co-workers. Samples were run in duplicate, and standard deviations varied from 5 to 14 percent. Working curves, from which final values were obtained, were constructed with the use of standard granite, G1, and the standard diabase, W1, as standards. See Fairbairn and others (1951). An experiment was carried out to determine the effect of matrix change, involving CaCO3, on the spectral line intensities of the quantitatively analyzed elements. The distribution of each of the elements is discussed separately, and particular emphasis is given to oceanic "red clay", in which many elements are enriched. A general discussion is given to mineralogy of the sediments, cation exchange in its bearing on this thesis, and a brief recount of the two hypotheses of origin of oceanic "red clay". An application of the findings of this thesis to aid in the choice of the more likely hypothesis is made.
Resumo:
Orientation based on visual cues can be extremely difficult in crowded bird colonies due to the presence of many individuals. We studied king penguins (Aptenodytes patagonicus) that live in dense colonies and are constantly faced with such problems. Our aims were to describe adult penguin homing paths on land and to test whether visual cues are important for their orientation in the colony. We also tested the hypothesis that older penguins should be better able to cope with limited visual cues due to their greater experience. We collected and examined GPS paths of homing penguins. In addition, we analyzed 8 months of penguin arrivals to and departures from the colony using data from an automatic identification system. We found that birds rearing chicks did not minimize their traveling time on land and did not proceed to their young (located in creches) along straight paths. Moreover, breeding birds' arrivals and departures were affected by the time of day and luminosity levels. Our data suggest that king penguins prefer to move in and out of the colony when visual cues are available. Still, they are capable of navigating even in complete darkness, and this ability seems to develop over the years, with older breeding birds more likely to move through the colony at nighttime luminosity levels. This study is the first step in unveiling the mysteries of king penguin orientation on land.
Resumo:
Organisms that are distributed across spatial climate gradients often exhibit adaptive local variations in morphological and physiological traits, but to what extent such gradients shape evolutionary responses is still unclear. Given the strong natural contrast in latitudinal temperature gradients between the North-American Pacific and Atlantic coast, we asked how increases in vertebral number (VN, known as Jordan's Rule) with latitude would differ between Pacific (Atherinops affinis) and Atlantic Silversides (Menidia menidia), two ecologically equivalent and taxonomically similar fishes with similar latitudinal distributions. VN was determined from radiographs of wild-caught adults (genetic + environmental differences) and its genetic basis confirmed by rearing offspring in common garden experiments. Compared to published data on VN variation in M. menidia (a mean increase of 7.0 vertebrae from 32 to 46°N, VN slope = 0.42/lat), the latitudinal VN increase in Pacific Silversides was approximately half as strong (a mean increase of 3.3 vertebrae from 28 to 43°N, VN slope = 0.23/lat). This mimicked the strong Atlantic (1.11°C/lat) versus weak Pacific latitudinal gradient (0.40°C/lat) in median annual sea surface temperature (SST). Importantly, the relationship of VN to SST was not significantly different between the two species (average slope = -0.39 vertebrae/°C), thus suggesting a common thermal dependency of VN in silverside fishes. Our findings provide novel support for the hypothesis that temperature gradients are the ultimate cause of Jordan's Rule, even though its exact adaptive significance remains speculative. A second investigated trait, the mode of sex determination in Atlantic versus Pacific Silversides, revealed patterns that were inconsistent with our expectation: M. menidia displays temperature-dependent sex determination (TSD) at low latitudes, where growing seasons are long or unconstrained, but also a gradual shift to genetic sex determination (GSD) with increasing latitude due to more and more curtailed growing seasons. Sex ratios in A. affinis, on the other hand, were independent of latitude and rearing temperature (indicating GSD), even though growing seasons are thermally unconstrained across most of the geographical distribution of A. affinis. This suggests that additional factors (e.g., longevity) play an important role in shaping the mode of sex determination in silverside fishes.
Resumo:
An interdisciplinary study was conducted at Qijurittuq (IbGk-3), an archaeological site located on Drayton Island along the eastern shore of Hudson Bay, Nunavik. Local Inuit made important contributions to the research. High school students participated in the field school, and elders shared their traditional knowledge. The elders expressed an interest in the source of the wood used to construct Qijurittuq's semi-subterranean dwellings, and this inspired us to expand our research in that direction. This interdisciplinary study included a reconstruction of the geomorphological and environmental history of Drayton Island, wood provenance and dendrochronology studies, research on house architecture and settlement patterns, and a zooarchaeological analysis. This paper synthesizes the preliminary results of this interdisciplinary investigation within the context of climate change. We discuss the persistence of semi-subterranean dwellings in eastern Hudson Bay long after they had been abandoned elsewhere. At Qijurittuq, their abandonment corresponds with the end of Little Ice Age. However, at the same time, the development of more permanent contact with Euro-Canadians was having a strong impact upon Inuit culture.
Resumo:
Future oceans are predicted to contain less oxygen than at present. This is because oxygen is less soluble in warmer water and predicted stratification will reduce mixing. Hypoxia in marine environments is thus likely to become more widespread in marine environments and understanding species-responses is important to predicting future impacts on biodiversity. This study used a tractable model, the Antarctic clam, Laternula elliptica, which can live for 36 years, and has a well-characterized ecology and physiology to understand responses to hypoxia and how the effect varied with age. Younger animals had a higher condition index, higher adenylate energy charge and transcriptional profiling indicated that they were physically active in their response to hypoxia, whereas older animals were more sedentary, with higher levels of oxidative damage and apoptosis in the gills. These effects could be attributed, in part, to age-related tissue scaling; older animals had proportionally less contractile muscle mass and smaller gills and foot compared with younger animals, with consequential effects on the whole-animal physiological response. The data here emphasize the importance of including age effects, as large mature individuals appear to be less able to resist hypoxic conditions and this is the size range that is the major contributor to future generations. Thus, the increased prevalence of hypoxia in future oceans may have marked effects on benthic organisms' abilities to persist and this is especially so for long-lived species when predicting responses to environmental perturbation.
Resumo:
To identify the properties of taxa sensitive and resistant to ocean acidification (OA), we tested the hypothesis that coral reef calcifiers differ in their sensitivity to OA as predictable outcomes of functional group alliances determined by conspicuous traits. We contrasted functional groups of eight corals and eight calcifying algae defined by morphology in corals and algae, skeletal structure in corals, spatial location of calcification in algae, and growth rate in corals and algae. The responses of calcification to OA were unrelated to morphology and skeletal structure in corals; they were, however, affected by growth rate in corals and algae (fast calcifiers were more sensitive than slow calcifiers), and by the site of calcification and morphology in algae. Species assemblages characterized by fast growth, and for algae, also cell-wall calcification, are likely to be ecological losers in the future ocean. This shift in relative success will affect the relative and absolute species abundances as well as the goods and services provided by coral reefs.
Resumo:
Quantitative analysis of upper Eocene-upper Oligocene calcareous nannofossil assemblages from five Ocean Drilling Program sites in the Atlantic and Indian Ocean sectors of the Southern Ocean reveals an abrupt increase in cool-water taxa at the top of magnetic Subchron C13R ca. 35.9 Ma, coincident with an enrichment of ~1? d18O in the planktonic foraminifers at these sites. The synchrony of the abrupt increase in cool-water taxa in the Southern Ocean renders this event a useful biostratigraphic datum at southern high latitudes. This earliest Oligocene cool-water taxa increase was the sharpest and largest during the late Eocene-late Oligocene interval and indicates a drop in surface-water temperature of more than 3°C in the Southern Ocean. This suggests that the earliest Oligocene d18O shift represents primarily a temperature signal; a small portion (~0.2?) is attributable to a global ice-volume increase.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
1. On the cruises 3 and 15 of R.V. "Meteor" 6 grab samples, and 6 hauls with the 6 m Agassiztrawl were taken and at 2 stations the deep sea camera was lowered. This material gave quantitative results on the meiofauna and minimum counts of the macrofauna. 2. The nematodes constitute nearly 95% of the meiofauna, the copepoda only 2%. With increasing sediment depth the density of animals decrease gradually. In the uppermost centimeter of sediment 42.6% of the meiofauna are found while only 3.7% live in layer 6-7 cm. Meiofauna weight ranges from 0.6-5.7 mg/25 m**2 surface i.e. 0.24-2.8 g/m**2. 3. Mean numbers of individuals and weights show standard errors of 20-30 %. As an approximate average values for further considerations the weight of the meiofauna in the area was taken as 1 g/m**2 4. Quantitative information on the macrofauna is derived from the trawls and the photographs for the actinia Chitonanthus abyssorum only, which is found in the rate of 1 individual/36-72 m**2, but seems to be less abundant generally. 5. Animal density does not decrease steadily from nearshore to offshore biocoenoses, i.e. generally with increasing depth. The decrease is more pronounced for macro- than for meiofauna. For the deep sea the weight proportion of macrofauna : meiofauna is of the order of 1 : 1. 6. With the assumption, that adaptation of metabolism to deep sea conditions is similar in macro- and meiofauna total metabolism of invertebrates is ascribed to meiofauna to more than 80%. 7. The structure of the biocoenosis of the deep sea floor is characterized by the meiofauna living on and in the sediment and by the dominance of sediment feeders in the macrofauna. 8. Considering the large numbets and high partition rates of bacteria a comparative large part of the metabolism in the deep sea sediment must be ascribed to bacteria. This favours the hypothesis, that with increasing depth and decreasing addition of organic material to the sediment, the importance of meiofauna and microorganisms for total metabolism increases. 9. Considering the different modes of food transport to the deep sea environment, i.e. sinking of dead particles, transport by vertical migration of organisms, aggregation of organic particles, adsorption of dissoloved organic substance to inorganic particles, and heterotrophy, the sediment may be assumed to contain more food for invertebrates than the water above the bottom. 10. Suspensions feeders of macrofauna are fixed to hard substrates in the sediment surface. Some of them are shown to bend themselves down to the bottom in underwater photographs. This suggests the idea that some deep sea suspension feeders partly depend on food from the sediment surface, on which they feed directly.