5 resultados para model efficiency
em Publishing Network for Geoscientific
Resumo:
Interannual environmental variability in Peru is dominated by the El Niño Southern Oscillation (ENSO). The most dramatic changes are associated with the warm El Niño (EN) phase (opposite the cold La Niña phase), which disrupts the normal coastal upwelling and affects the dynamics of many coastal marine and terrestrial resources. This study presents a trophic model for Sechura Bay, located at the northern extension of the Peruvian upwelling system, where ENSO-induced environmental variability is most extreme. Using an initial steady-state model for the year 1996, we explore the dynamics of the ecosystem through the year 2003 (including the strong EN of 1997/98 and the weaker EN of 2002/03). Based on support from literature, we force biomass of several non-trophically-mediated 'drivers' (e.g. Scallops, Benthic detritivores, Octopus, and Littoral fish) to observe whether the fit between historical and simulated changes (by the trophic model) is improved. The results indicate that the Sechura Bay Ecosystem is a relatively inefficient system from a community energetics point of view, likely due to the periodic perturbations of ENSO. A combination of high system productivity and low trophic level target species of invertebrates (i.e. scallops) and fish (i.e. anchoveta) results in high catches and an efficient fishery. The importance of environmental drivers is suggested, given the relatively small improvements in the fit of the simulation with the addition of trophic drivers on remaining functional groups' dynamics. An additional multivariate regression model is presented for the scallop Argopecten purpuratus, which demonstrates a significant correlation between both spawning stock size and riverine discharge-mediated mortality on catch levels. These results are discussed in the context of the appropriateness of trophodynamic modeling in relatively open systems, and how management strategies may be focused given the highly environmentally influenced marine resources of the region.
Resumo:
The Model for Prediction Across Scales (MPAS) is a novel set of Earth system simulation components and consists of an atmospheric model, an ocean model and a land-ice model. Its distinct features are the use of unstructured Voronoi meshes and C-grid discretisation to address shortcomings of global models on regular grids and the use of limited area models nested in a forcing data set, with respect to parallel scalability, numerical accuracy and physical consistency. This concept allows one to include the feedback of regional land use information on weather and climate at local and global scales in a consistent way, which is impossible to achieve with traditional limited area modelling approaches. Here, we present an in-depth evaluation of MPAS with regards to technical aspects of performing model runs and scalability for three medium-size meshes on four different high-performance computing (HPC) sites with different architectures and compilers. We uncover model limitations and identify new aspects for the model optimisation that are introduced by the use of unstructured Voronoi meshes. We further demonstrate the model performance of MPAS in terms of its capability to reproduce the dynamics of the West African monsoon (WAM) and its associated precipitation in a pilot study. Constrained by available computational resources, we compare 11-month runs for two meshes with observations and a reference simulation from the Weather Research and Forecasting (WRF) model. We show that MPAS can reproduce the atmospheric dynamics on global and local scales in this experiment, but identify a precipitation excess for the West African region. Finally, we conduct extreme scaling tests on a global 3?km mesh with more than 65 million horizontal grid cells on up to half a million cores. We discuss necessary modifications of the model code to improve its parallel performance in general and specific to the HPC environment. We confirm good scaling (70?% parallel efficiency or better) of the MPAS model and provide numbers on the computational requirements for experiments with the 3?km mesh. In doing so, we show that global, convection-resolving atmospheric simulations with MPAS are within reach of current and next generations of high-end computing facilities.