443 resultados para microbial biomass C

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study was carried out on the main plots (Main Experiment) of a large grassland biodiversity experiment, the Jena Experiment. In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. This data set consists of standard deviation (SD), mean and stability (stab) of soil microbial basal respiration (µl O2/h/g dry soil) and microbial biomass carbon (µg C/g dry soil). Data were derived by taking soil samples and measuring basal and substrate-induced microbial respiration with an oxygen-consumption apparatus. Samples for calculating the spatial stability of soil microbial properties were taken on the 20th of September in 2010. Oxygen consumption of soil microorganisms in fresh soil equivalent to 3.5 g dry weight was measured at 22°C over a period of 24 h. Basal respiration (µlO2/g dry soil/h) was calculated as mean of the oxygen consumption rates of hours 14 to 24 after the start of measurements. Substrate- induced respiration was determined by adding D-glucose to saturate catabolic enzymes of microorganisms according to preliminary studies (4 mg g-1 dry soil solved in 400 µl deionized water). Maximum initial respiratory response (µl O2/g dry soil/ h) was calculated as mean of the lowest three oxygen consumption values within the first 10 h after glucose addition. Microbial biomass carbon (µg C/g dry soil) was calculated as 38 × Maximum initial respiratory response according to prelimiray studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study was carried out on the main plots (Main Experiment) of a large grassland biodiversity experiment, the Jena Experiment. In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. This data set consists of standard deviation (SD), mean and stability (stab) of soil microbial basal respiration (µl O2/h/g dry soil) and microbial biomass carbon (µg C/g dry soil). Data were derived by taking soil samples and measuring basal and substrate-induced microbial respiration with an oxygen-consumption apparatus. Samples for calculating the temporal stability were taken every year in May/June from 2003 to 2014, except in 2005. Oxygen consumption of soil microorganisms in fresh soil equivalent to 3.5 g dry weight was measured at 22°C over a period of 24 h. Basal respiration (µlO2/g dry soil/h) was calculated as mean of the oxygen consumption rates of hours 14 to 24 after the start of measurements. Substrate- induced respiration was determined by adding D-glucose to saturate catabolic enzymes of microorganisms according to preliminary studies (4 mg g-1 dry soil solved in 400 µl deionized water). Maximum initial respiratory response (µl O2/g dry soil/h) was calculated as mean of the lowest three oxygen consumption values within the first 10 h after glucose addition. Microbial biomass carbon (µg C/g dry soil) was calculated as 38 × Maximum initial respiratory response according to prelimiray studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study was carried out on the main plots of a large grassland biodiversity experiment (the Jena Experiment). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. We tracked soil microbial basal respiration (BR; µlO2/g dry soil/h) and biomass carbon (Cmic; µgC/g dry soil) over a time period of 12 years (2003-2014) and examined the role of plant diversity and plant functional group composition for the spatial and temporal stability (calculated as mean/SD) of soil microbial properties (basal respiration and biomass) in bulk-soil. Our results highlight the importance of plant functional group composition for the spatial and temporal stability of soil microbial properties, and hence for microbially-driven ecosystem processes, such as decomposition and element cycling, in temperate semi-natural grassland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Present theories of deep-sea community organization recognize the importance of small-scale biological disturbances, originated partly from the activities of epibenthic megafaunal organisms, in maintaining high benthic biodiversity in the deep sea. However, due to technical difficulties, in situ experimental studies to test hypotheses in the deep sea are lacking. The objective of the present study was to evaluate the potential of cages as tools for studying the importance of epibenthic megafauna for deep-sea benthic communities. Using the deep-diving Remotely Operated Vehicle (ROV) "VICTOR 6000", six experimental cages were deployed at the sea floor at 2500 m water depth and sampled after 2 years (2y) and 4 years (4y) for a variety of sediment parameters in order to test for caging artefacts. Photo and video footage from both experiments showed that the cages were efficient at excluding the targeted fauna. The cage also proved to be appropriate to deep-sea studies considering the fact that there was no fouling on the cages and no evidence of any organism establishing residence on or adjacent to it. Environmental changes inside the cages were dependent on the experimental period analysed. In the 4y experiment, chlorophyll a concentrations were higher in the uppermost centimeter of sediment inside cages whereas in the 2y experiment, it did not differ between inside and outside. Although the cages caused some changes to the sedimentary regime, they are relatively minor compared to similar studies in shallow water. The only parameter that was significantly higher under cages at both experiments was the concentration of phaeopigments. Since the epibenthic megafauna at our study site can potentially affect phytodetritus distribution and availability at the seafloor (e.g. via consumption, disaggregation and burial), we suggest that their exclusion was, at least in part, responsible for the increases in pigment concentrations. Cages might be suitable tools to study the long-term effects of disturbances caused by megafaunal organisms on the diversity and community structure of smaller-sized organisms in the deep sea, although further work employing partial cage controls, greater replication, and evaluating faunal components will be essential to unequivocally establish their utility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two cruises were carried out during the Austral spring-summer (November 1995 - January 1996: FRUELA 95, and January - February 1996: FRUELA 96), sampling in Bellingshausen Sea, western Bransfield Strait and Gerlache Strait. We investigated whether there were any spatial (among locations) or temporal (between cruises) differences in abundance and biomass of microbial heterotrophic and autotrophic assemblages. Changes in the concentration of chlorophyll a, prokaryotes, heterotrophic and phototrophic nanoflagellates abundance and biomass were followed in the above mentioned locations close to the Antarctic Peninsula. Parallel to these measurements we selected seven stations to determine grazing rates on prokaryotes by protists at a depth coincident with the depth of maximum chlorophyll a concentration. Measuring the disappearance of fluorescent minicells over 48 h assessed grazing by the protist community. From prokaryotes grazing rates, we estimated how much prokaryotic carbon was channeled to higher trophic levels (protists), and whether this prokaryotic carbon could maintain protists biomass and growth rates. In general higher values were reported for Gerlache Strait than for the other two areas. Differences between cruises were more evident for the oligotrophic areas in Bellingshausen Sea and Bransfield Strait than in Gerlache Strait (eutrophic area). Higher values for phototrophic (at least for chlorophyll a concentration) and abundance of all heterotrophic microbial populations were recorded in Bellingshausen Sea and Bransfield Strait during late spring - early summer (FRUELA 95) than in mid-summer (FRUELA 96). However, similar results for these variables were observed in Gerlache Strait as in spring-early summer as well as in mid-summer. Also, we found differences in grazing rates on prokaryotes among stations located in the three areas and between cruises. Thus, during late spring-early summer (FRUELA 95), the prokaryotic biomass consumed from the standing stock was higher in Bellingshausen Sea (26%/day) and Gerlache Strait (18-26%/day) than in Bransfield Strait (0.68-14%/day). During mid-summer (FRUELA 96) a different pattern was observed. The station located in Bellingshausen Sea showed higher values of prokaryotic biomass consumed (11%/day) than the one located in Gerlache Strait (2.3%/day). Assuming HNF as the main prokaryotic consumers, we estimated that the prokaryotic carbon consumed by heterotrophic nanoflagellates (HNF) barely covers their carbon requirements for growth. These results suggest that in Antarctic waters, HNF should feed in other carbon sources than prokaryotes.