3 resultados para micro-CT,cone beam Ct,trabecular tissue,image segmentation,computed tomography

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dorsal valve of a Pleistocene terebratulid brachiopod, Terebratula scillae Seguenza, 1871, has developed a malignant cyst due to colonization in vivo by an endolithic sponge.This trace fossil is a compound boring and bioclaustration structure, representing a boring that has grown in unison with the growth of the cyst. The brachiopod has grown to adult size and growthlines indicate that it was colonised by the sponge when about half grown. Malformation of the shell may not have caused the death of the brachiopod and the sponge does not appear to have outlived its host; both symbionts seem to have died more or less simultaneously. This minus-minus relationship of two symbionts is considered to be a case of 'accidental symbiosis'.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endolithic bioerosion is difficult to analyse and to describe, and it usually requires damaging of the sample material. Sponge erosion (Entobia) may be one of the most difficult to evaluate as it is simultaneously macroscopically inhomogeneous and microstructurally intricate. We studied the bioerosion traces of the two Australian sponges Cliona celata Grant, 1826 (sensu Schönberg 2000) and Cliona orientalis Thiele, 1900 with a newly available radiographic technology: high resolution X-ray micro-computed tomography (MCT). MCT allows non-destructive visualisation of live and dead structures in three dimensions and was compared to traditional microscopic methods. MCT and microscopy showed that C. celata bioerosion was more intense in the centre and branched out in the periphery. In contrast, C. orientalis produced a dense, even trace meshwork and caused an overall more intense erosion pattern than C. celata. Extended pioneering filaments were not usually found at the margins of the studied sponge erosion, but branches ended abruptly or tapered to points. Results obtained with MCT were similar in quality to observations from transparent optical spar under the dissecting microscope. Microstructures could not be resolved as well as with e.g. scanning electron microscopy (SEM). Even though sponge scars and sponge chips were easily recognisable on maximum magnification MCT images, they lacked the detail that is available from SEM. Other drawbacks of MCT involve high costs and presently limited access. Even though MCT cannot presently replace traditional techniques such as corrosion casts viewed by SEM, we obtained valuable information. Especially for the possibility to measure endolithic pore volumes, we regard MCT as a very promising tool that will continue to be optimised. A combination of different methods will produce the best results in the study of Entobia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coral reefs persist in an accretion-erosion balance and ocean acidification resulting from anthropogenic CO2 emissions threatens to shift this balance in favor of net reef erosion. Corals and calcifying algae, largely responsible for reef accretion, are vulnerable to environmental changes associated with ocean acidification, but the direct effects of lower pH on reef erosion has received less attention, particularly in the context of known drivers of bioerosion and natural variability. This study examines the balance between reef accretion and erosion along a well-characterized natural environmental gradient in Kane'ohe Bay, Hawai'i using experimental blocks of coral skeleton. Comparing before and after micro-computed tomography (µCT) scans to quantify net accretion and erosion, we show that, at the small spatial scale of this study (tens of meters), pH was a better predictor of the accretion-erosion balance than environmental drivers suggested by prior studies, including resource availability, temperature, distance from shore, or depth. In addition, this study highlights the fine-scale variation of pH in coastal systems and the importance of microhabitat variation for reef accretion and erosion processes. We demonstrate significant changes in both the mean and variance of pH on the order of meters, providing a local perspective on global increases in pCO2. Our findings suggest that increases in reef erosion, combined with expected decreases in calcification, will accelerate the shift of coral reefs to an erosion-dominated system in a high-CO2 world. This shift will make reefs increasingly susceptible to storm damage and sea-level rise, threatening the maintenance of the ecosystem services that coral reefs provide.