5 resultados para methyl isobutyl ketone
em Publishing Network for Geoscientific
Resumo:
Six samples from Sites 1219 and 1221 ranging in age from early Eocene to early Oligocene were analyzed for freely extractable lipids to determine whether the low organic carbon (Corg) sediments of the Eocene equatorial Pacific (Corg content typically 0.03%) are appropriate for biomarker studies. Only one sample from the Oligocene equatorial Pacific (Sample 199-1219A-13H-3, 50-54 cm) contained any biomarkers of interest to paleoceanography. The only lipids identified in the remaining samples appear to be contaminants from drilling or subsequent handling. Sample 199-1219A-13H-3, 50-54 cm, contained alkenone biomarkers specific to haptophyte algae that are used for estimating past mean annual sea-surface temperature (maSST). If the Holocene calibration of maSST is appropriate for the Oligocene, the estimated equatorial temperature is >=28.3°C, or at least 3°C warmer than modern equatorial maSST at a similar longitude.
Resumo:
Production pathways of the prominent volatile organic halogen compound methyl iodide (CH3I) are not fully understood. Based on observations, production of CH3I via photochemical degradation of organic material or via phytoplankton production has been proposed. Additional insights could not be gained from correlations between observed biological and environmental variables or from biogeochemical modeling to identify unambiguously the source of methyl iodide. In this study, we aim to address this question of source mechanisms with a three-dimensional global ocean general circulation model including biogeochemistry (MPIOM-HAMOCC (MPIOM - Max Planck Institute Ocean Model HAMOCC - HAMburg Ocean Carbon Cycle model)) by carrying out a series of sensitivity experiments. The simulated fields are compared with a newly available global data set. Simulated distribution patterns and emissions of CH3I differ largely for the two different production pathways. The evaluation of our model results with observations shows that, on the global scale, observed surface concentrations of CH3I can be best explained by the photochemical production pathway. Our results further emphasize that correlations between CH3I and abiotic or biotic factors do not necessarily provide meaningful insights concerning the source of origin. Overall, we find a net global annual CH3I air-sea flux that ranges between 70 and 260 Gg/yr. On the global scale, the ocean acts as a net source of methyl iodide for the atmosphere, though in some regions in boreal winter, fluxes are of the opposite direction (from the atmosphere to the ocean).
Resumo:
A series of long-chain (C37, C38, C39), primarily di and tri-unsaturated methyl and ethyl ketones, first identified in sediments from Walvis Ridge off West Africa and from Black Sea (de Leeuw et al., 1979), has been found in marine sediments throughout the world (Brassell et al., 1986 doi:10.1038/320129a0). The marine coccolithophorid Emiliania huxleyi and members of the class Prymnesiophyceae are now the recognized sources of these compounds (Volkman et al., 1979; Marlowe, et al., 1984). Experiments with laboratory cultures of algae showed the degree of unsaturation in the ketone seris biosynthesized depends on growth temperature (Brassell et al., 1986; Marlowe, 1984), a physiological respons observed for classical membrane lipids (vanDeenen et al., 1972). Brassell and co-workers (Brassell et al., 198; Brassell et al., 1986b) thus proposed that systematic fluctuations in the unsaturation of these alkenones noted down-core in sediments from the Kane Gap region of the north-east tropical Atlantic Ocean and correlated with glacial-interglacial cycles provide an organic geochemical measure of past sea-surface water temperatures. Using laboratory cultures of E. huxleyi, we have calibrated changes in the unsaturation pattern of the long-chain ketone series versus growth temperature. The calibration curve is linear and accurtely predicts unsuturation patterns observed in natural particulate materials collected from oceanic waters of known temperature. We present evidence supporting the proposed paleotemperature hypothesis (Brassell et al., 1986, Brassel et al., 1986b) and suggesting absolute 'sea-surface temperatures' for a given oceanic location can be estimated from an analysis of long-chain ketone compositions preserved in glacial and interglacial horizons of deep-sea sediment cores.