2 resultados para metal-ceramic interface

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface mineralogical compositions and their association to modern processes are well known from the east Atlantic and south-west Indian sectors of the Southern Ocean, but data from the interface of these areas - the Prydz Bay-Kerguelen region - is still missing. The objective of our study was to provide mineralogical data of reference samples from this region and to relate these mineralogical assemblages to hinterland geology, weathering, transport and depositional processes. Clay mineral assemblages were analysed by means of X-ray diffraction technique. Heavy mineral assemblages were determined by counting of gravity-separated grains under a polarizing microscope. Results show that by use of clay mineral assemblages four mineralogical provinces can be subdivided: i) continental shelf, ii) continental slope, iii) deep sea, iv) Kerguelen Plateau. Heavy mineral assemblages in the fine sand fraction are relatively uniform except for samples taken from the East Antarctic shelf. Our findings show that mineralogical studies on sediment cores from the study area have the potential to provide insights into past shifts in ice-supported transport and activity and provenance of different water masses (e.g. Antarctic slope current and deep western boundary current) in the Prydz Bay-Kerguelen region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results of experimental studies of ion exchange properties of manganese and iron minerals in micronodules from diverse bioproductive zones of the World Ocean were considered. It was found that sorption behavior of these minerals was similar to that of ore minerals from ferromanganese nodules and low-temperature hydrothermal crusts. The exchange complex of minerals in the micronodules includes the major (Na**+, K**+, Ca**2+, Mg**2+, and Mn**2+) and subordinate (Ni**2+, Cu**2+, Co**2+, Pb**2+, and others) cations. Reactivity of theses cations increases from Pb**2+ and Co**2+ to Na**+ and Ca**2+. Exchange capacity of micronodule minerals increases from alkali to heavy metal cations. Capacity of iron and manganese minerals in oceanic micronodules increases in the following series: goethite < goethite + birnessite < todorokite + asbolane-buserite + birnessite < asbolane-buserite + birnessite < birnessite + asbolane-buserite < birnessite + vernadite ~= Fe-vernadite + Mn-feroxyhyte. Obtained data supplement available information on ion exchange properties of oceanic ferromanganese sediments and refine the role of sorption processes in redistribution of metal cations at the bottom water - sediment interface during micronodule formation and growth.