10 resultados para metal oxide nanofibre

em Publishing Network for Geoscientific


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Redox-sensitive trace metals (Mn, Fe, U, Mo, Re), nutrients and terminal metabolic products (NO3-, NH4+, PO43-, total alkalinity) were for the first time investigated in pore waters of Antarctic coastal sediments. The results of this study reveal a high spatial variability in redox conditions in surface sediments from Potter Cove, King George Island, western Antarctic Peninsula. Particularly in the shallower areas of the bay the significant correlation between sulphate depletion and total alkalinity, the inorganic product of terminal metabolism, indicates sulphate reduction to be the major pathway of organic matter mineralisation. In contrast, dissimilatory metal oxide reduction seems to be prevailing in the newly ice-free areas and the deeper troughs, where concentrations of dissolved iron of up to 700 µM were found. We suggest that the increased accumulation of fine-grained material with high amounts of reducible metal oxides in combination with the reduced availability of metabolisable organic matter and enhanced physical and biological disturbance by bottom water currents, ice scouring and burrowing organisms favours metal oxide reduction over sulphate reduction in these areas. Based on modelled iron fluxes we calculate the contribution of the Antarctic shelf to the pool of potentially bioavailable iron (Feb) to be 6.9x10**3 to 790x10**3 t/yr. Consequently, these shelf sediments would provide an Feb flux of 0.35-39.5/mg/m**2/yr (median: 3.8 mg/m**2/yr) to the Southern Ocean. This contribution is in the same order of magnitude as the flux provided by icebergs and significantly higher than the input by aeolian dust. For this reason suboxic shelf sediments form a key source of iron for the high nutrient-low chlorophyll (HNLC) areas of the Southern Ocean. This source may become even more important in the future due to rising temperatures at the WAP accompanied by enhanced glacier retreat and the accumulation of melt water derived iron-rich material on the shelf.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Decomposition of organic matter combined with density stratification generate a pronounced intermediate water oxygen minimum zone (OMZ) in the northwest Indian Ocean. This zone currently lies between water depths of 200 and 2000 m and extends approximately 5000 km southeast from the Arabian coast. Based upon benthic foraminiferal assemblage changes, it has been suggested that this OMZ was even more extensive during the late Miocene-early Pliocene (6.5-3.0 Ma), with a maximum volume and/or intensity at approximately 5.0 Ma. While this inference may contribute to an understanding of the history of northwest Indian Ocean upwelling, corroborating geochemical evidence for this interpretation has heretofore been lacking. Ocean Drilling Program (ODP) sites 752, 754, and 757 on Broken and Ninetyeast ridges are located within central Indian Ocean intermediate water depths (1086-1650 m) but outside the present lateral dimensions of the Indian Ocean OMZ. High-resolution chemical analyses of sediment from these sites indicate significant reductions in the flux of Mn and normalized Mn concentrations between 6.5 and 3.0 Ma that are most pronounced at approximately 5.0 Ma. Because late Miocene-Pliocene paleodepths for these sites were essentially the same as at present and because extremely low sedimentation rates (0.3-1.3 cm/ky) most likely precluded sedimentary metal oxide diagenesis, we suggest that the observed Mn depletions reflect diminished deposition of reducible Mn oxyhydroxide phases within O2 deficient intermediate waters and that this effect was most intense at approximately 5.0 Ma. This interpretation implies that waters with less than 2.0 mL/L O2 extended at least 1500 km beyond their present limits and is consistent with changes in benthic foraminifera assemblages. We further suggest this expanded Indian Ocean OMZ is related to regionally and/or globally increased biological productivity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The early oceanographic history of the Arctic Ocean is important in regulating, and responding to, climatic changes. However, constraints on its oceanographic history preceding the Quaternary (the past 1.8 Myr) have become available only recently, because of the difficulties associated with obtaining continuous sediment records in such a hostile setting. Here, we use the neodymium isotope compositions of two sediment cores recovered near the North Pole to reconstruct over the past ~5 Myr the sources contributing to Arctic Intermediate Water, a water mass found today at depths of 200 to 1,500 m. We interpret high neodymium ratios for the period between 15 and 2 Myr ago, and for the glacial periods thereafter, as indicative of weathering input from the Siberian Putoranan basalts into the Arctic Ocean. Arctic Intermediate Water was then derived from brine formation in the Eurasian shelf regions, with only a limited contribution of intermediate water from the North Atlantic. In contrast, the modern circulation pattern, with relatively high contributions of North Atlantic Intermediate Water and negligible input from brine formation, exhibits low neodymium isotope ratios and is typical for the interglacial periods of the past 2 Myr. We suggest that changes in climatic conditions and the tectonic setting were responsible for switches between these two modes.