6 resultados para merozoite surface protein 1
em Publishing Network for Geoscientific
Resumo:
The study was carried out from April 30 until July 13 of 1997 in Adventfjorden (Spitsbergen). Formation of a less saline and warmer surface water (~1 m thick) caused by melting of the ice was observed in the fjord during the first days of May. In summer the less saline surface layer was about 3 m thick. Euphotic depth measured under the ice sheet reached 12 m, whereas load of mineral matter brought with riverine discharge in summer (content of total particulate matter in the fjord reached 1.66 kg/m**2) dramatically reduced euphotic zone depth to 0.35 m. By pigment measurement three phases of phytoplankton development in Adventfjorden were distinguished: (1) spring bloom that has started under fast ice and reached maximum in the mid of May, (2) stagnation period in June, (3) increase of pigment concentration in July, what could indicate start of the next algae bloom. Analyses of chlorophylls and carotenoids revealed that diatoms (chl c, fucoxanthin), and green algae (chl b, lutein) dominated phytoplankton community in the fjord. Moreover, presence of peridinin indicates presence of Dinophyta and alloxanthin - occurence of Cryptophyta. In May and June 1997 phytoplankton appeared mainly in the surface of water, while in July, as a result of inflow of turbulent riverine waters into Adventfjorden, algae cells were pushed down and the highest numbers were observed at depth ~20 m. Great phaeopigments to chl a ratio (= 0.54) found in fjord seston in June and July probably shows strong impact of zooplankton grazing on phytoplankton development. High contribution of chlorophyllide a in porphyrin a poll in samples collected under fast ice (chlorophyllide a / chl a ratio = 0.18) reflects the final stage of algal communitie succession in ice, just before spring ice melt and release of biota to oceanic water. Chlorophyllide a content during summer was minor or not detectable, demonstrating that diatom cells were in good physiological condition. High chl a allomer / chl a ratio (average = 0.11 for the period investigated) confirms high oxygen concentration in environment of Adventfjorden.
Resumo:
Water samples were collected from pre-dawn CTD casts at 5 depths corresponding to 55%, 20%, 7%, 5% and 1% of surface irradiance. 1 litre water samples wrapped with optical filters to replicate light levels. Spiked with 200 µL of 13C labelled sodium bicarbonate. After 24 hourse filtered through ashed 25mm GF/F (Whatman) filters, rinsed with HCl solution (1-2%) and stored at -20oC. On shore encapsulated in tin capsules and analysed for 13C isotopic enrichment. Carbon uptake rates calculated using the equations of Fernandez et al. (2005).
Resumo:
Lithology describes the geochemical, mineralogical, and physical properties of rocks. It plays a key role in many processes at the Earth surface, especially the fluxes of matter to soils, ecosystems, rivers, and oceans. Understanding these processes at the global scale requires a high resolution description of lithology. A new high resolution global lithological map (GLiM) was assembled from existing regional geological maps translated into lithological information with the help of regional literature. The GLiM represents the rock types of the Earth surface using 1,235,400 polygons. The lithological classification consists of three levels. The first level contains 16 lithological classes comparable to previously applied definitions in global lithological maps. The additional two levels contain 12 and 14 subclasses, respectively, which describe more specific rock attributes. According to the GLiM, the Earth is covered by 64 % sediments (a third of which is carbonates), 13 % metamorphics, 7 % plutonics, and 6 % volcanics, and 10% are covered by water or ice. The high resolution of the GLiM allows observation of regional lithological distributions which often vary from the global average. The GLiM enables regional analysis of Earth surface processes at global scales.
Resumo:
Phytoplankton biomass distribution (chlorophyll a, chl. a) and species composition (cell numbers) were investigated during three expeditions to the Kara Sea with "Akademik Boris Petrov" (BP) in 1997, 1999, and 2000. The distribution of biomass in the estuaries of Ob and Yenisei showed a similar range in 1997 (0.2 to 3.2 µg/l) and 2000 (0.4 to 3.5 ug/l); higher chl. a concentrations during these two years were found in Yenisei than in Ob. In 1999, phytoplankton biomass in the Ob and Ob Estuary was much higher than in 1997 and 2000, with maximum values above 10.0 ug chl. a/l. In 1999, biomass in Yenisei was lower (1.5 to ~5 ug/l) than in Ob but slightly higher than in 1997 and in 2000. During the expedition in 2000, the research area extended farther to the north, here, lowest phytoplankton biomass during all three years was found. Typical summer values for integrated chl.a biomass (surface to bottom) ranged between 6 and 20 mg m**-2. Strong differences existed in species composition in both rivers, the estuaries, and the open Kara Sea. In general, three or four different populations could be distinguished in surface waters: (1) freshwater diatoms together with bluegreen algae in both rivers, (2) centric and small pennate diatoms mainly brackish species in the estuaries, (3) north of 74°N, brackish/marine species dominated, i.e. in 1999 Thalassiosira cfpunctigera and Chaetoceros spp prevailed in the phytoplankton bloom in Ob. (4) At the northernmost, almost marine stations, a region with a more heterogeneous composition of unicellular plankton was encountered. We assume, we found different seasonal signals of phytoplankton development during 1997/2000 and 1999, respectively. However, the yearly fluctuation of freshwater runoff of both rivers seems to have the strongest influence on the timing and duration of phytoplankton blooms, species compositions and biomass standing stocks during summer.
Resumo:
The relationship between mesoscale hydrodynamics and the distribution of large particulate matter (LPM, particles larger than 200 ?m) in the first 1000 m of the Western Mediterranean basin was studied with a microprocessor-driven CTD-video package, the Underwater Video Profiler (UVP). Observations made during the last decade showed that, in late spring and summer, LPM concentration was high in the coastal part of the Western Mediterranean basin at the shelf break and near the continental slope (computed maximum: 149 ?g C/l between 0 and 100 m near the Spanish coast of the Gibraltar Strait). LPM concentration decreased further offshore into the central Mediterranean Sea where, below 100 m, it remained uniformly low, ranging from 2 to 4 ?g C/l. However, a strong variability was observed in the different mesoscale structures such as the Almeria-Oran jet in the Alboran Sea or the Algerian eddies. LPM concentration was up to one order of magnitude higher in fronts and eddies than in the adjacent oligotrophic Mediterranean waters (i.e. 35 vs. 8 ?g C/l in the Alboran Sea or 16 vs. 3 ?g C/l in a small shear cyclonic eddy). Our observations suggest that LPM spatial heterogeneity generated by the upper layer mesoscale hydrodynamics extends into deeper layers. Consequently, the superficial mesoscale dynamics may significantly contribute to the biogeochemical cycling between the upper and meso-pelagic layers.