14 resultados para mercury species

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present here the first mercury speciation study in the water column of the Southern Ocean, using a high-resolution south-to-north section (27 stations from 65.50°S to 44.00°S) with up to 15 depths (0-4440 m) between Antarctica and Tasmania (Australia) along the 140°E meridian. In addition, in order to explore the role of sea ice in Hg cycling, a study of mercury speciation in the 'snow-sea ice-seawater' continuum was conducted at a coastal site, near the Australian Casey station (66.40°S; 101.14°E). In the open ocean waters, total Hg (Hg(T)) concentrations varied from 0.63 to 2.76 pmol/L with 'transient-type' vertical profiles and a latitudinal distribution suggesting an atmospheric mercury source south of the Southern Polar Front (SPF) and a surface removal north of the Subantartic Front (SAF). Slightly higher mean Hg(T) concentrations (1.35 ± 0.39 pmol/L) were measured in Antarctic Bottom Water (AABW) compared to Antarctic Intermediate water (AAIW) (1.15 ± 0.22 pmol/L). Labile Hg (Hg(R)) concentrations varied from 0.01 to 2.28 pmol/L, with a distribution showing that the Hg(T) enrichment south of the SPF consisted mainly of Hg(R) (67 ± 23%), whereas, in contrast, the percentage was half that in surface waters north of PFZ (33 ± 23%). Methylated mercury species (MeHg(T)) concentrations ranged from 0.02 to 0.86 pmol/L. All vertical MeHg(T) profiles exhibited roughly the same pattern, with low concentrations observed in the surface layer and increasing concentrations with depth up to an intermediate depth maximum. As for Hg(T), low mean MeHg(T) concentrations were associated with AAIW, and higher ones with AABW. The maximum of MeHg(T) concentration at each station was systematically observed within the oxygen minimum zone, with a statistically significant MeHg(T) vs Apparent Oxygen Utilization (AOU) relationship (p <0.001). The proportion of Hg(T) as methylated species was lower than 5% in the surface waters, around 50% in deep waters below 1000 m, reaching a maximum of 78% south of the SPF. At Casey coastal station Hg(T) and Hg(R) concentrations found in the 'snow-sea ice-seawater' continuum were one order of magnitude higher than those measured in open ocean waters. The distribution of Hg(T) there suggests an atmospheric Hg deposition with snow and a fractionation process during sea ice formation, which excludes Hg from the ice with a parallel Hg enrichment of brine, probably concurring with the Hg enrichment of AABW observed in the open ocean waters. Contrastingly, MeHg(T) concentrations in the sea ice environment were in the same range as in the open ocean waters, remaining below 0.45 pmol/L. The MeHg(T) vertical profile through the continuum suggests different sources, including atmosphere, seawater and methylation in basal ice. Whereas Hg(T) concentrations in the water samples collected between the Antarctic continent and Tasmania are comparable to recent measurements made in the other parts of the World Ocean (e.g., Soerensen et al., 2010; doi:10.1021/es903839n), the Hg species distribution suggests distinct features in the Southern Ocean Hg cycle: (i) a net atmospheric Hg deposition on surface water near the ice edge, (ii) the Hg enrichment in brine during sea ice formation, and (iii) a net methylation of Hg south of the SPF.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Total mercury (THg), methylmercury (MeHg) and stable isotopes of nitrogen (d15N) and carbon (d13C) were measured in three invertebrate, five fish, three seabird and three marine mammal species of central West Greenland to investigate trophic transfer of mercury in this Arctic marine food web. The food web magnification factor (FWMF) estimated as the slope of the regression between the natural logarithm of THg or MeHg concentrations (mg/kg dw) and tissue d15N (per mil) was estimated to 0.183 (SE = 0.052) for THg and 0.339 (SE = 0.075) for MeHg. The FWMFs were not only comparable with those reported for other Arctic marine food webs but also with quite different food webs such as freshwater lakes in the sub-Arctic, East Africa and Papua New Guinea. This suggests similar mechanisms of mercury assimilation and isotopic (d15N) discrimination among a broad range of aquatic taxa and underlines the possibility of broad ecosystem comparisons using the combined contaminant and stable isotope approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mercury concentrations ([Hg]) in Arctic food fish often exceed guidelines for human subsistence consumption. Previous research on two food fish species, Arctic char (Salvelinus alpinus) and lake trout (Salvelinus namaycush), indicates that anadromous fish have lower [Hg] than nonanadromous fish, but there have been no intraregional comparisons. Also, no comparisons of [Hg] among anadromous (sea-run), resident (marine access but do not migrate), and landlocked (no marine access) life history types of Arctic char and lake trout have been published. Using intraregional data from 10 lakes in the West Kitikmeot area of Nunavut, Canada, we found that [Hg] varied significantly among species and life history types. Differences among species-life history types were best explained by age-at-size and C:N ratios (indicator of lipid); [Hg] was significantly and negatively related to both. At a standardized fork length of 500 mm, lake trout had significantly higher [Hg] (mean 0.17 µg/g wet wt) than Arctic char (0.09 µg/g). Anadromous and resident Arctic char had significantly lower [Hg] (each 0.04 µg/g) than landlocked Arctic char (0.19 µg/g). Anadromous lake trout had significantly lower [Hg] (0.12 µg/g) than resident lake trout (0.18 µg/g), but no significant difference in [Hg] was seen between landlocked lake trout (0.21 µg/g) and other life history types. Our results are relevant to human health assessments and consumption guidance and will inform models of Hg accumulation in Arctic fish.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of this study was to investigate possible temporal trends of persistent organic pollutants (POPs) and mercury in eggs of herring gulls (Larus argentatus), black-legged kittiwakes (Rissa tridactyla), common guillemots (Uria aalge) and Atlantic puffins (Fratercula arctica) in Northern Norway. Eggs were collected in 1983, 1993 and 2003. Egg concentrations of POPs (PCB congeners IUPAC numbers: CB-28, 74, 66, 101, 99, 110, 149, 118, 153, 105, 141, 138, 187, 128, 156, 157, 180, 170, 194, 206, HCB, alph-HCH, beta-HCH, gamma-HCH, oxychlordane, trans-chlordane, cis-chlordane, trans-nonachlor, cis-nonachlor, p,p'-DDE, o,p'-DDD, p,p'-DDD, o,p'-DDT and p,p'-DDT) and mercury were quantified. Generally, POP levels decreased between 1983 and 2003 in all species. No significant temporal trend in mercury levels was found between 1983 and 2003.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atmospheric deposition of mercury to remote areas has increased threefold since pre-industrial times. Mercury deposition is particularly pronounced in the Arctic. Following deposition to surface oceans and sea ice, mercury can be converted into methylmercury, a biologically accessible form of the toxin, which biomagnifies along the marine food chain. Mass-independent fractionation of mercury isotopes accompanies the photochemical breakdown of methylmercury to less bioavailable forms in surface waters. Here we examine the isotopic composition of mercury in seabird eggs collected from colonies in the North Pacific Ocean, the Bering Sea and the western Arctic Ocean, to determine geographical variations in methylmercury breakdown at northern latitudes. We find evidence for mass-independent fractionation of mercury isotopes. The degree of mass-independent fractionation declines with latitude. Foraging behaviour and geographic variations in mercury sources and solar radiation fluxes were unable to explain the latitudinal gradient. However, mass-independent fractionation was negatively correlated with sea-ice cover. We conclude that sea-ice cover impedes the photochemical breakdown of methylmercury in surface waters, and suggest that further loss of Arctic sea ice this century will accelerate sunlight-induced breakdown of methylmercury in northern surface waters.