4 resultados para max-semistable domain of attraction

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zircons from the oldest magmatic and metasedimentary rocks in the Podolia domain of the Ukrainian shield were studied and dated by the U-Pb method on a NORDSIM secondary-ion mass spectrometer. Age of zircon cores in enderbite gneisses sampled in the Kazachii Yar and Odessa quarries on the opposite banks of the Yuzhnyi Bug River reaches 3790 Ma. Cores of terrigenous zircons in quartzites from the Odessa quarry as well as in garnet gneisses from the Zaval'e graphite quarry have age within 3650-3750 Ma. Zircon rims record two metamorphic events around 2750-2850 Ma and 1900-2000 Ma. Extremely low U content in zircons of the second age group indicates conditions of the granulite facies metamorphism in Paleoproterozoic within the Podolia domain. Measured data on orthorocks (enderbite-gneiss) and metasedimentary rocks unambiguously suggest existence of the ancient Paleoarchean crust in the Podolia (Dniester-Bug) domain of the Ukrainian shield. They contribute in our knowledge of scales of formation and geochemical features of the primordial crust.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vertical density gradients in the Nordic Seas are crucial for the preconditioning of the surface water to thermohaline sinking in winter. These gradients can be reconstructed from paired oxygen isotope data in tests of different species of planktonic foraminifera, the isotopic signatures of which represent different calcification depths in the water column. Comparison of d18O values from foraminiferal tests in plankton hauls, sediment traps, and nearby core top samples with the calculated d18Ocalcite profile of the water column revealed species-specific d18O vital effects and the role of bioturbational admixture of subfossil specimens into the surface sediment. On the basis of core top samples obtained along a west-east transect across various hydrographic regions of the Nordic Seas, d18O values of Turborotalita quinqueloba document apparent calcification depths within the pycnocline at 25-75 m water depth. The isotopic signatures of Neogloboquadrina pachyderma (s) reflect water masses near and well below the pycnocline between 70 and 250 m off Norway, where the Atlantic inflow leads to thermal stratification. Here, temperatures in the calcification depth of N. pachyderma (s) differ from sea surface temperature by approximately -2.5°C. In contrast, N. pachyderma (s) calcifies very close to the sea surface (20-50 m) in the Arctic domain of the western Nordic Seas. However, further west N. pachyderma (s) prefers somewhat deeper, more saline water at 70-130 m well below the halocline that confines the low saline East Greenland Current. This implies that the d18O values of N. pachyderma (s) do not fully reflect the freshwater proportion in surface water and that any reconstruction of past meltwater plumes based on d18O is too conservative, because it overestimates sea surface salinity. Minimum d18O differences (<0.2per mil) between N. pachyderma (s) and T. quinqueloba may serve as proxy for sea regions with dominant haline and absent thermal stratification, whereas thermal stratification leads to d18O differences of >0.4 to >1.5per mil.