2 resultados para masking

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Collisional and post-collisional volcanic rocks in the Ulubey (Ordu) area at the western edge of the Eastern Pontide Tertiary Volcanic Province (EPTVP) in NE Turkey are divided into four suites; Middle Eocene (49.4-44.6 Ma) aged Andesite-Trachyandesite (AT), Trachyandesite-Trachydacite-Rhyolite (TTR), Trachydacite-Dacite (TD) suites, and Middle Miocene (15.1 Ma) aged Trachybasalt (TB) suite. Local stratigraphy in the Ulubey area starts with shallow marine environment sediments of the Paleocene-Eocene time and then continues extensively with sub-aerial andesitic to rhyolitic and rare basaltic volcanism during Eocene and Miocene time, respectively. Petrographically, the volcanic rocks are composed primarily of andesites/trachyandesites, with minor trachydacites/rhyolites, basalts/trachybasalts and pyroclastics, and show porphyric, hyalo-microlitic porphyric and rarely glomeroporphyric, intersertal, intergranular, fluidal and sieve textures. The Ulubey (Ordu) volcanic rocks indicate magma evolution from tholeiitic-alkaline to calc-alkaline with medium-K contents. Primitive mantle normalized trace element and chondrite normalized rare earth element (REE) patterns show that the volcanic rocks have moderate light rare earth element (LREE)/heavy rare earth element (HREE) ratios relative to E-Type MORB and depletion in Nb, Ta and Ti. High Th/Yb ratios indicate parental magma(s) derived from an enriched source formed by mixing of slab and asthenospheric melts previously modified by fluids and sediments from a subduction zone. All of the volcanic rocks share similar incompatible element ratios (e.g., La/Sm, Zr/Nb, La/Nb) and chondrite-normalized REE patterns, indicating that the basic to acidic rocks originated from the same source. The volcanic rocks were produced by the slab dehydration-induced melting of an existing metasomatized mantle source, and the fluids from the slab dehydration introduced significant large ion lithophile element (LILE) and LREE to the source, masking its inherent HFSE-enriched characteristics. The initial 87Sr/86Sr (0.7044-0.7050) and eNd (-0.3 to +3.4) ratios of the volcanics suggest that they originated from an enriched lithospheric mantle source with low Sm/Nd ratios. Integration of the geochemical, petrological and isotopical with regional and local geological data suggest that the Tertiary volcanic rocks from the Ulubey (Ordu) area were derived from an enriched mantle, which had been previously metasomatized by fluids derived from subducted slab during Eocene to Miocene in collisional and post-collisional extension-related geodynamic setting following Late Mesozoic continental collision between the Eurasian plate and the Tauride-Anatolide platform.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fifteen Iberian margin sediment cores, distributed between 43°12'N and 35°53'N, have been used to reconstruct spatial and temporal (sub)surface circulation along the Iberian margin since the Last Glacial period. Time-slice maps of planktonic foraminiferal derived summer sea surface temperature (SST) and export productivity (Pexp) were established for specific time intervals within the last 35 ky: the Holocene (Recent and last 8 ky), Younger Dryas (YD), Heinrich Stadials (HS) 1, 2a, 2b, 3, and the Last Glacial Maximum (LGM). The SST during the Holocene shows the same latitudinal gradient along the western Iberian margin as present-day with cold but productive areas that reflect the influence of coastal upwelling centers. The LGM appears as a slightly less warm, but more productive period relative to the Holocene and present-day conditions, suggesting that sea-level minima forced a westward displacement of the coastal upwelling centers possibly accompanied by a strengthening of northward winds. During the YD, a longitudinal thermal front is depicted at 10°W, with cold polar waters offshore and warmer subtropical waters inshore, suggesting that the subtropical Paleo-Iberian Poleward Current more likely flowed at a more inshore location masking the local SST signal and amplitude of variation. A substantial cooling and drop in productivity is observed during all HS, in particular HS1 and HS3, reflecting the penetration of icebergs-derived meltwater. These most extreme southward extensions of very cold waters define a strong SST gradient that marks a possible Paleo-Azores Front. Higher production south of this front was likely fed by frontal nutrient advection.