81 resultados para magma chamber

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent studies of abyssal peridotites (Johnson et al., 1990, doi:10.1029/JB095iB03p02661), mid-ocean-ridge basalts (MORBs) (McKenzie, 1985, doi:10.1016/0012-821X(85)90001-9) and their entrained melt inclusions (Sobolev and Shimizu, 1993, doi:10.1038/363151a0; Humler and Whitechurch, 1988, doi:10.1016/0012-821X(88)90055-6) have shown that fractional melting of the upwelling sub-oceanic mantle produces magmas with a much wider range of compositions than erupted MORBs. In particular, it seems that strongly depleted primary magmas are routinely produced by melting beneath ridges (Johnson et al., 1990, doi:10.1029/JB095iB03p02661). The absence of strongly depleted melts as erupted lavas prompts the question of how long such magmas survive beneath ridges, before their distinctive compositions are concealed by mixing with more enriched magmas. Here we report mineral compositions from a unique suite of oceanic cumulates recovered from DSDP Site 334 (Aumento et al., doi:10.2973/dsdp.proc.37.1977), which indicate that the rocks crystallized from basaltic liquids that were strongly depleted in Na, Ti, Zr, Y, Sr and rare-earth elements relative to any erupted MORB. It thus appears that the magmatic plumbing system beneath the Mid-Atlantic Ridge permitted strongly depleted magmas to accumulate in a magma chamber and remain sufficiently isolated to produce cumulate rocks. Even so, spatial heterogeneity in the compositions of high-calcium pyroxenes suggests that in the later stages of solidification these rocks reacted with infiltrating enriched basaltic liquids.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Leg 83 of the Deep Sea Drilling Project has deepened Hole 504B to over 1 km into basement, 1350 m below the seafloor (BSF). The hole previously extended through 274.5 m of sediment and 561.5 m of pillow basalts altered at low temperature (< 100°C), to 836 m BSF. Leg 83 drilling penetrated an additional 10 m of pillows, a 209-m transition zone, and 295 m into a sheeted dike complex. Leg 83 basalts (836-1350 m BSF) generally contain superimposed greenschist and zeolite-facies mineral parageneses. Alteration of pillows and dikes from 836 to 898 m BSF occurred under reducing conditions at low water/rock ratios, and at temperatures probably greater than 100°C. Evolution of fluid composition resulted in the formation of (1) clay minerals, followed by (2) zeolites, anhydrite, and calcite. Alteration of basalts in the transition zone and dike sections (898-1350 m BSF) occurred in three basic stages, defined by the opening of fractures and the formation of characteristic secondary minerals. (1) Chlorite, actinolite, pyrite, albite, sphene, and minor quartz formed in veins and host basalts from partially reacted seawater (Mg-bearing, locally metal-and Si-enriched) at temperatures of at least 200-250°C. (2) Quartz, epidote, and sulfides formed in veins at temperatures of up to 380°C, from more evolved (Mg-depleted, metal-, Si-, and 18O-enriched) fluids. (3) The last stage is characterized by zeolite formation: (a) analcite and stilbite formed locally, possibly at temperatures less than 200°C followed by (b) formation of laumontite, heulàndite, scolecite, calcite, and prehnite from solutions depleted in Mg and enriched in Ca and 18O, at temperatures of up to 250°C. The presence of small amounts of anhydrite locally may be due to ingress of relatively unaltered seawater into the system during Stage 3. Alteration was controlled by the permeability of the crust and is characterized by generally incomplete recrystallization and replacement reactions among secondary minerals. Secondary mineralogy in the host basalts is strongly controlled by primary mineralogy. The alteration of Leg 83 basalts can be interpreted in terms of an evolving hydrothermal system, with (a) changes in solution composition because of reaction of seawater fluids with basalts at high temperatures; (b) variations in permeability caused by several stages of sealing and reopening of cracks; and (c) a general cooling of the system, caused either by the cooling of a magma chamber beneath the spreading center and/or the movement of the crust away from the heat source. The relationship of the high-temperature alteration in the transition zone and dike sections to the low-temperature alteration in the overlying pillow section remains uncertain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An investigation of ~1-m.y.-old dikes and lavas from the north wall of the Hess Deep Rift (2°15'N, 101°30'W) collected during Alvin expeditions provides a detailed view of the evolution of fast spreading oceanic crust. The study area encompasses 25 km of an east-west flow line, representing ~370,000 years of crustal accretion at the East Pacific Rise. Samples analyzed exhibit depleted incompatible trace element abundances and ratios [(La/Sm)N < 1]. Indices of fractionation (MgO), and incompatible element ratios (La/Sm, Nb/Ti) show no systematic trends along flow line. Rather, over short (<4 m) and long (~25 km) distances, significant variations are observed in major and trace element concentrations and ratios. Modeling of these variations attests to the juxtaposition of dikes of distinct parental magma compositions. These findings, combined with studies of segmentation of the subaxial magma chamber and lateral magma transport in dikes along rift-dominated systems, suggest a more realistic model of the magmatic system underlying the East Pacific Rise relative to the commonly assumed twodimensional model. In this model, melts from a heterogeneous mantle feed distinct portions of a segmented axial magma reservoir. Dikes emanating from these distinct reservoirs transport magma along axis, resulting in interleaved dikes and host lavas with different evolutionary histories. This model suggests the use of axial or flow line lava compositions to infer the evolution of axial magma chambers should be approached with caution because dikes may never erupt lava or may transport magma significant distances along axis and erupt lavas far from their axial magma chamber of origin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

DSDP Hole 504B is the deepest section drilled into oceanic basement, penetrating through a 571.5-m lava pile and a 209-m transition zone of lavas and dikes into 295 m of a sheeted dike complex. To define the basement composition 194 samples of least altered basalts, representing all lithologic units, were analyzed for their major and 26 trace elements. As is evident from the alteration-sensitive indicators H2O+, CO2, S, K, Mn, Zn, Cu, and the iron oxidation ratio, all rocks recovered are chemically altered to some extent. Downhole variation in these parameters enables us to distinguish five depth-related alteration zones that closely correlate with changes in alteration mineralogy. Alteration in the uppermost basement portion is characterized by pronounced K-uptake, sulfur loss, and iron oxidation and clearly demonstrates low-temperature seawater interaction. A very spectacular type of alteration is confined to the depth range from 910 to 1059 m below seafloor (BSF). Rocks from this basement portion exhibit the lowest iron oxidation, the highest H2O+ contents, and a considerable enrichment in Mn, S, Zn, and Cu. At the top of this zone a stockwork-like sulfide mineralization occurs. The chemical data suggest that this basement portion was at one time within a hydrothermal upflow zone. The steep gradient in alteration chemistry above this zone and the ore precipitation are interpreted as the result of mixing of the upflowing hydrothermal fluids with lower-temperature solutions circulating in the lava pile. Despite the chemical alteration the primary composition and variation of the rocks can be reliably established. All data demonstrate that the pillow lavas and the dikes are remarkably uniform and display almost the same range of variation. A general characteristic of the rocks that classify as olivine tholeiites is their high MgO contents (up to 10.5 wt.%) and their low K abundances (-200 ppm). According to their mg-values, which range from 0.60 to 0.74, most basalts appear to have undergone some high-level crystal fractionation. Despite the overall similarity in composition, there are two major basalt groups that have significantly different abundances and ratios of incompatible elements at similar mg-values. The majority of the basalts from the pillow lava and dike sections are chemically closely related, and most probably represent differentiation products of a common parental magma. They are low in Na2O, TiO2, and P2O5, and very low in the more hygromagmaphile elements. Interdigitated with this basalt group is a very rarely occurring basalt that is higher in Na2O, TiO2, P2O5, much less depleted in hygromagmaphile elements, and similar to normal mid-ocean ridge basalt (MORB). The latter is restricted to Lithologic Units 5 and 36 of the pillow lava section and Lithologic Unit 83 of the dike section. The two basalt groups cannot be related by differentiation processes but have to be regarded as products of two different parental magmas. The compositional uniformity of the majority of the basalts suggests that the magma chamber beneath the Costa Rica Rift reached nearly steady-state conditions. However, the presence of lavas and dikes that crystallized from a different parental magma requires the existence of a separate conduit-magma chamber system for these melts. Occasionally mixing between the two magma types appears to have occurred. The chemical characteristics of the two magma types imply some heterogeneity in the mantle source underlying the Costa Rica Rift. The predominant magma type represents an extremely depleted source, whereas the rare magma type presumably originated from regions of less depleted mantle material (relict or affected by metasomatism).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hole 1105A penetrated 158 m of gabbros at a site offset 1.3 km east-northeast from Hole 735B on the Atlantis Bank near the Atlantis II Fracture Zone. A total of 118 m of dominantly medium- to coarse-grained intercalated Fe-Ti oxide gabbro and olivine gabbro was recovered from Hole 1105A that shows many petrographic features similar to those recovered from the upper part of Hole 735B. The main rock types are distinguished based on the constituent cumulus phases, with the most primitive gabbros consisting of olivine, plagioclase, and clinopyroxene. The inferred crystallization order is subsequently Fe-Ti oxides (ilmenite and titanomagnetite), followed by orthopyroxene, then apatite, and finally biotite. Orthopyroxene appears to replace olivine in a narrow middle interval. The magmatic evolution is likewise reflected in the mineral compositions. Plagioclase varies from An66 to An28. Olivine varies from Fo78 to Fo35. The gap in olivine crystallization occurs between Fo46 and Fo40 and coincides approximately with the appearance of orthopyroxene (~En50). The clinopyroxenes show large compositional variation in Mg/(Mg + Fe total) from 0.84 to 0.51. The nonquadrilateral cations of clinopyroxene similarly show large variations with Ti increasing for the olivine gabbros and decreasing for the Fe-Ti oxide gabbros with the decrease in Mg/(Mg + Fe total). The apatites are mainly flourapatites. The compositional variation in the gabbros is interpreted as a comagmatic suite resulting from fractional crystallization. Pyroxene geothermometry suggests equilibration temperatures from 1100°C and below. The coexisting Fe-Ti oxide minerals indicate subsolidus equilibration temperatures from 900°C for olivine gabbros to 700°C for the most evolved apatite-bearing gabbros. The cryptic variation in the olivine gabbros defines two or three lenses, 40 to 60 m thick, each characterized by a distinct convex zoning with a lower segment indicating upward reverse fractionation, a central maximum, and an upper segment showing normal fractionation. The Fe-Ti oxide gabbros show cryptic variations independent of the host olivine gabbros and reveal a systematic upward normal fractionation trend transgressing host olivine gabbro boundaries. Forward fractional crystallization modeling, using a likely parental magma composition from the Atlantis II Fracture Zone (MgO = 7.2 wt%; Mg/[Mg + Fe2+] = 0.62), closely matches the compositions of coexisting olivine, plagioclase, and clinopyroxene. This modeling suggests cosaturation of olivine, plagioclase, and clinopyroxene from 1155°C and the addition of Fe-Ti oxides from 1100°C. The liquid line of descent initially shows increasing FeO with moderately increasing SiO2. After saturation of Fe-Ti oxides, the liquid strongly decreases in FeO and TiO2 and increases in SiO2, reaching dacitic compositions at ~10% liquid remaining. The calculations indicate that formation of olivine gabbros can be accounted for by <65% fractionation and that only the residual 35% liquid was saturated in Fe-Ti oxides. The modeling of the solid fractionation products shows that both the olivine gabbro and the Fe-Ti oxide gabbros contain very small amounts of trapped liquid (<5%). The implications are that the gabbros represent crystal mush that originated in a recharging and tapping subaxial chamber. Compaction and upward melt migration in the crystal mush appear to have been terminated with relatively large amounts of interstitial liquid remaining in the upper parts of the cumulate mush. This termination may have been caused by tectonic disturbances, uplift, and associated withdrawal of magma into the subaxial dike and sill system. Prolonged compaction and cooling of the trapped melt in the mush formed small differentiated bodies and lenses by pressure release migration and crystallization along syntectonic channels. This resulted in differentiation products along lateral and vertical channelways in the host gabbro that vary from olivine gabbro, to Fe-Ti oxide gabbro, gabbronorite, and apatite gabbros and show large compositional variations independent of the host olivine gabbros.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reports results of an investigation of a representative collection of samples recovered by deep-sea drilling from the oceanic basement 10 miles west of the rift valley axis in the crest zone of the Mid- Atlantic Ridge at 15°44'N (Sites 1275B and 1275D). Drilling operations were carried out during Leg 209 of the Drilling Vessel JOIDES Resolution within the framework of the Ocean Drilling Program (ODP). The oceanic crust was penetrated to depth of 108.7 m at Site 1275B and 209 m at Site 1275D. We reconstructed the following sequence of magmatic and metamorphic events resulting in the formation of a typical oceanic core complex of slow-spreading ridges: (1) formation of strongly fractionated (enriched in iron and titanium) tholeiitic magmatic melt parental to gabbroids under investigation in a large magma chamber located in a shallow mantle and operating for a long time under steady-state conditions; (2) transfer of the parental magmatic melt of the gabbroids to the base of the oceanic crust, its interaction with host mantle peridotites, and formation of troctolites and plagioclase peridotites; (3) intrusion of enriched trondhjemite melts as veins and dikes in the early formed plutonic complex, contact recrystallization of the gabbro, and development in the peridotite-gabbro complex of enriched geochemical signatures owing to influence of trondhjemite injections; (4) emplacement of dolerite dikes (transformed to diabases); (5) metamorphism of upper epidoteamphibolite facies with participation of marine fluids; and (6) rapid exhumation of the plutonic complex to the seafloor accompanied by greenschist-facies metamorphism. Distribution patterns of Sr and Nd isotopes and strongly incompatible elements in the rocks suggest contributions from two melt sources to the magmatic evolution of the MAR crest at 15°44'N: a depleted reservoir responsible for formation of the gabbros and diabases and an enriched reservoir, from which trondhjemites (granophyres) were derived.