7 resultados para m-Xylene
em Publishing Network for Geoscientific
Resumo:
Sediments from the Baja California Continental Margin Transect - Sites 474 and 476 - showed small amounts of C2-C8 hydrocarbons and functionalized compounds (alkenes) typical of organic-rich, Recent, cold (<30°C) marine sediments. In contrast, some samples from Sites 477, 478, 479, and Hole 481A in the Guaymas Basin, an active spreading center, showed the characteristics of thermally generated hydrocarbons. These include an increase (sometimes exponential) in amount and diversity of C2-C8 hydrocarbons and a decrease in alkenes in more thermally mature sediments. The results indicate that the injection of basaltic sills has minimal effect on C2-C8 hydrocarbon generation except in the immediate vicinity of the sill. The absence of light hydrocarbons close to the hottest sills suggests that the compounds distill away as they are formed in these areas of very active hydrothermal circulation. A sample of young sediment exposed to very high temperatures (>300°C) from deeper thermal sources at the hottest site, 477, showed a very limited hydrocarbon distribution, including primarily ethane, benzene, and toluene, together with smaller amounts of propane and butane.
Resumo:
Small amounts of C1-C8 hydrocarbons were detected in continental rise sediments from DSDP Site 603. Organiccarbon- lean sections contained only C1-C3 compounds believed to have migrated from organic-carbon-rich sections. Heavier (C4-C8) hydrocarbons were found only in organic-carbon-rich sections. Restricted and sporadic distribution of C4-C6 compounds in 0-1100 m sub-bottom sediments suggest low-temperature (<20°C) biological/chemical generation processes. Increased C4-C8 concentrations and complexity, including unusually high levels of xylene, were detected in two deeper Cretaceous sections (603-34-2, 134 cm and 603-81-3, 120 cm). This behavior, which was not observed in 17 other samples from sub-bottom depths greater than 1100 m, is similar to that observed in immature surface sediments from the geothermally active Guaymas Basin (Gulf of California) area.
Resumo:
Carbon isotopic composition of predominantly marine kerogen in latest Oligocene mudstones of the Peru Margin ODP 682A Hole shows an about 3.5? increase with decreasing age. Py-GC and elemental (C=N ratio) analysis of the kerogen plus sulphur isotopic study together with earlier knowledge on geological setting and organic geochemistry results in a better understanding of depositionary environment and allows to separation of the influence of concentration of water dissolved carbon dioxide (ce) on kerogen delta13C from that of other factors (bacterial degradation, sea surface temperature, DIC delta13C, productivity, and admixture of land plant OM). Based on this analysis, the major part of the kerogen shift is considered as a result of the latest Oligocene decrease of marine photosynthetic carbon isotopic fractionation in the Peru Margin photic zone, which in turn possibly reflects a simultaneous drop in atmospheric CO2 level. Uncertainties in the evaluation of the factors affecting the marine photosynthetic carbon isotopic fractionation and the extent of ocean-atmosphere disequilibrium do not permit calculation of the decrease of the atmospheric CO2.
Resumo:
Analysis of the molecular composition of the organic matter (OM) from whole sediment samples can avoid analytical bias that might result from isolation of components from the sediment matrix, but has its own analytical challenges. We evaluated the use of GC * GC-ToFMS to analyze the pyrolysis products of six whole sediment samples obtained from above, within and below a 1 million year old OM-rich Mediterranean sapropel layer. We found differences in pyrolysis products