12 resultados para möjligheter till dokumentation

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Along a transatlantic section from 57°N to 60°S that was carried out from November 7 till December 19, 2000 on board R/V Horizont II concentrations of CO2 were measured in the near-water layer of the air and differences between partial pressures in water and air in various climatic zones were calculated. It was shown that variations of CO2 concentrations in the near-water layer of air and those of values of water-air partial pressure difference were from 324x10**-6 to 426x10**-6 and from 150x10**-6 to 100x10**-6 atm, respectively. Maximum value of CO2 partial pressure in air in the near-water layer (426x10**-6 atm) was noted at 45°-47°N; minimum of 324x10**-6 atm was found in Antarctica at 59°S. During measurenents maximum value of CO2 partial pressure difference in water and air (150 x10**-6) was observed at 45°-48°N; maximum flux in this case was directed from the atmosphere to water. Maximum value of CO2 partial pressure difference in water and air for flux directed from the ocean to air (100 x10**-6) was observed at 59°-60°S. Comparison of calculated values of partial pressure difference in water and air with previous data points to more intense exchange of CO2 between the ocean and atmosphere during the survey period was considered. According to values of CO2 partial pressure difference in air and water as compared to 1975, exchange intensity in the Northern Hemisphere (absorption from the atmosphere) increased. A well-pronounced latitudinal effect of distribution of CO2 partial pressure in air was observed. Along the route variations in CO2 concentrations in zones of water divergence and convergence were registered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dataset is based on a long-term study (38 years) at the Galata transect and covers the spring-summer periods from 1967 till 2005. The whole dataset is composed of 360 data of total zooplankton biomass and abundance . Samples were collected in discrete layers 0-10m, 10-20m, 10-25m, 25-50m, 50-70m, 50-100m, 100-150. Mesozooplankton abundance: the collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Fishery Resource by Prof. Asen Konsulov and Institute of Oceanology by Prof. Asen Konsulov, Lyudmila Kamburska and Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). Taxon-specific mesozooplankton abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Fishery Resource by prof. Asen Konsulov and Institute of Oceanology by Prof. Asen Konsulov, Lyudmila Kamburska and Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been shown that in the Sevastopol Bay during the year primary production and chlorophyll "a" created by picoplankton (0.45-2.5 µm) consisted on the average 20-44% of total production. It was approximately a half of the level for oligotrophic waters of the ocean. Picoplankton of waters studied is represented by eucaryotes, cell diameter of which is, as a rule, about 2-3 µm. Contribution of the finest fraction of phytoplankton (0.43-0.85 µm) to primary production and con¬tent of chlorophyll "a" was insignificant (0-4%).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From 1950 through 1900 studies on the glacial geology of northern Greenland have been made in cooperation with the U.S. Air Force Cambridge Research Laboratories. As a result of these studies four distinct phases of the latest glaciation have been recognized. The last glaciation extended over most of the land and removed traces of previous anes. Retreat of the ice mass began some time previous to 6000 years ago. This was followed by a rtse in sea level which deposited clay-silt succeeded by karne gravels around stagnant ice lobes in the large valleys. Marine terraces, up to 129 meters above present sea level, developed as readjustment occurred in the land free of ice. About 3700 years ago an advance of glaciers down major fjords took place followed by retreat to approximately the present position of the ice. Till in Peary Land, north of Frederick E. Hyde Fjord, contains only locally derived matertals indicating that the central Greenland ice cap did not cover the area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first studies of microalgae fluxes over the Lomonosov Ridge in the northern Laptev Sea were carried out with a sediment trap at the year-long mooring station LOMO-2, installed at 150 m depth from September 15, 1995 to August 16, 1996. These studies demonstrated essential seasonal variations of vertical microalgae flux. It was shown that in summer diverse flora (composed mainly of cryophylic diatoms) growed intensively beneath the permanent ice cover. Strongly pronounced seasonal variations of microalgae growth correlate closely with solar radiation. Exactly during the maximum insolation period, from the middle of July until the end of September, the microalgae flux was hundreds of times higher than that in the rest of the year. Summer values of the microalgae flux over the Lomonosov Ridge in the northern Laptev Sea were similar to those in the Weddell Sea (Antarctic) and exceeded summer flux values in the Norwegian and Greenland Seas and in the St. Anna Trough (northwestern Kara Sea).