3 resultados para local food system

em Publishing Network for Geoscientific


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Focus of this study is the analysis of a local hydrogeological system in the subhumid outer tropics in the western African country of Benin. The aim was to characterize, qualify and quantify the hydrogeological and hydrological properties of the approx. 30 km2 big study area and to develop a conceptual hydrogeological model. This model should provide the basis for further studies on a regional scale. The main goal was to obtain the process knowledge of the hydrogeological system and to determine the process and the quantity of the groundwater recharge in the working area. According to the objectives, a broad hydrogeological approach was chosen. In a spacious network on the local scale TDR probes, suction cups and groundwater observation bores were installed. Also in a multidisciplinary cooperation with hydrology, geography, soil science, biology, meteorology and plant nutrition sciences, instruments like discharge gauging stations, tensiometers, lysimeter, climate stations, runoff plots and erosion pins were installed in the test site for the investigation of the relevant parameters of the hydrological cycle.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Human-induced habitat destruction, overexploitation, introduction of alien species and climate change are causing species to go extinct at unprecedented rates, from local to global scales. There are growing concerns that these kinds of disturbances alter important functions of ecosystems. Our current understanding is that key parameters of a community (e.g. its functional diversity, species composition, and presence/absence of vulnerable species) reflect an ecological network's ability to resist or rebound from change in response to pressures and disturbances, such as species loss. If the food web structure is relatively simple, we can analyse the roles of different species interactions in determining how environmental impacts translate into species loss. However, when ecosystems harbour species-rich communities, as is the case in most natural systems, then the complex network of ecological interactions makes it a far more challenging task to perceive how species' functional roles influence the consequences of species loss. One approach to deal with such complexity is to focus on the functional traits of species in order to identify their respective roles: for instance, large species seem to be more susceptible to extinction than smaller species. Here, we introduce and analyse the marine food web from the high Antarctic Weddell Sea Shelf to illustrate the role of species traits in relation to network robustness of this complex food web. Our approach was threefold: firstly, we applied a new classification system to all species, grouping them by traits other than body size; secondly, we tested the relationship between body size and food web parameters within and across these groups and finally, we calculated food web robustness. We addressed questions regarding (i) patterns of species functional/trophic roles, (ii) relationships between species functional roles and body size and (iii) the role of species body size in terms of network robustness. Our results show that when analyzing relationships between trophic structure, body size and network structure, the diversity of predatory species types needs to be considered in future studies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Energy availability and local adaptation are major components in mediating the effects of ocean acidification (OA) on marine species. In a long-term study, we investigated the effects of food availability and elevated pCO2 (ca 400, 1000 and 3000 µatm) on growth of newly settled Amphibalanus (Balanus) improvisus to reproduction, and on their offspring. We also compared two different populations, which were presumed to differ in their sensitivity to pCO2 due to differing habitat conditions: Kiel Fjord, Germany (Western Baltic Sea) with naturally strong pCO2 fluctuations, and the Tjärnö Archipelago, Sweden (Skagerrak) with far lower fluctuations. Over 20 weeks, survival, growth, reproduction and shell strength of Kiel barnacles were all unaffected by elevated pCO2, regardless of food availability. Moulting frequency and shell corrosion increased with increasing pCO2 in adults. Larval development and juvenile growth of the F1 generation were tolerant to increased pCO2, irrespective of parental treatment. In contrast, elevated pCO2 had a strong negative impact on survival of Tjärnö barnacles. Specimens from this population were able to withstand moderate levels of elevated pCO2 over 5 weeks when food was plentiful but showed reduced growth under food limitation. Severe levels of elevated pCO2 negatively impacted growth of Tjärnö barnacles in both food treatments. We demonstrate a conspicuously higher tolerance to elevated pCO2 in Kiel barnacles than in Tjärnö barnacles. This tolerance was carried-over from adults to their offspring. Our findings indicate that populations from fluctuating pCO2 environments are more tolerant to elevated pCO2 than populations from more stable pCO2 habitats. We furthermore provide evidence that energy availability can mediate the ability of barnacles to withstand moderate CO2 stress. Considering the high tolerance of Kiel specimens and the possibility to adapt over many generations, near future OA alone does not seem to present a major threat for A. improvisus