832 resultados para lipid-core-peptide (LCP) system

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This PhD thesis focused on the analysis and application of microbial membrane lipids as biomarkers in marine sediments. Existing protocols for lipid extraction from marine sediments and biomass were modified. In addition, recent protocols based on high-performance liquid chromatography coupled to mass spectrometry (HPLC-MS) as well as state-of-the-art mass spectrometric analysis by quadrupole time-of-flight (MSqTOF) and the triple quadrupole (MSQQQ) mass spectrometer were used to investigate matrix effects and evaluate the reliability of quantitative analysis in marine environmental samples. The improved lipid extraction and quantification were used to analyze Black Sea water column and sediments samples to a depth of 8 meters from site GeoB 15105 taken during cruise M84/1 (DARCSEAS) with R/V Meteor to apply lipid analysis in benthic bio systems. With this component specific differentiation between planktonic and benthic lipid signature we assessed possible lipid sources. Here, this high detail lipid fingerprinting allowed us to observe changes in the head group and lipid core structures of the intact polar lipids according to the geochemical zonation.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Lipids are used for the evaluation of the different organic matter contributions in the north eastern Norwegian sea (M23258 site; 75ºN, 14ºE) over the last 15,000 years. Development of a mass balance model based on the down core quantification of the C37 alkenones, the odd carbon numbered n-alkanes (Aodd) and the unresolved complex mixture of hydrocarbons (UCM) has allowed three main organic matter inputs involving marine, continental and ancient reworked organic matter to be recognized. The model shows a good agreement between measured and reconstructed TOC values. Similarly, a strong parallelism is observed between predicted components such as marine TOC and carbonate content (CaCO3), which was determined independently. Representation of the model results within a time-scale based on 15 AMS-14C measurements shows that the main changes in organic matter constituents are coincident with the major climatic events of the last 15,000 a. Thus, the predominance of reworked organic matter is characteristic of Termination Ia (up to 70%), continental organic matter was dominant during the Bølling-Allerød (B-A) and Younger Dryas (YD) periods (about 85%) and a strong increase of marine organic matter occurred in the Holocene (between 50 and 75%). This agreement reflects the main hydrographic changes that determined the deposition of sedimentary materials during the period studied: ice-rafted detritus from the Barents continental platform, ice-melting waters from the Arctic fluvial system discharging into the Barents sea and dominance of north Atlantic currents, respectively. In this respect, the high-resolution down core record resulting from the mass balance and lipid measurements allows the identification of millennial-scale events such as the increase of reworked organic matter at the final retreat of the Barents ice sheet at the end of the deglaciation period (Termination Ib).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Surface sediments from the eastern South Atlantic were investigated for their lipid biomarker contents and bulk organic geochemical characteristics to identify sources, transport pathways and preservation processes of organic components. The sediments cover a wide range of depositional settings with large differences in mass accumulation rates. The highest marine organic carbon (OC) contributions are detected along the coast, especially underlying the Benguela upwelling system. Terrigenous OC contributions are highest in the Congo deep-sea fan. Lipid biomarker fluxes are significantly correlated to the extent of oxygen exposure in the sediment. Normalization to total organic carbon (TOC) contents enabled the characterization of regional lipid biomarker production and transport mechanisms. Principal component analyses revealed five distinct groups of characteristic molecular and bulk organic geochemical parameters. Combined with information on lipid sources, the main controlling mechanisms of the spatial lipid distributions in the surface sediments are defined, indicating marine productivity related to river-induced mixing and oceanic upwelling, wind-driven deep upwelling, river-supply of terrigenous organic material, shallow coastal upwelling and eolian supply of plant-waxes.