19 resultados para ligules and style branch under SEM

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sensitivity of copepods to ocean acidification (OA) and warming may increase with time, however, studies >10 days and on synergistic effects are rare. We therefore incubated late copepodites and females of two dominant Arctic species, Calanus glacialis and Calanus hyperboreus, at 0 °C at 390 and 3000 µatm pCO2 for several months in fall/winter 2010. Respiration rates, body mass and mortality in both species and life stages did not change with pCO2. To detect synergistic effects, in 2011 C. hyperboreus females were kept at different pCO2 and temperatures (0, 5, 10 °C). Incubation at 10 °C induced sublethal stress, which might have overruled effects of pCO2. At 5 °C and 3000 µatm, body carbon was significantly lowest indicating a synergistic effect. The copepods, thus, can tolerate pCO2 predicted for a future ocean, but in combination with increasing temperatures they could be sensitive to OA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During summer 2014 (mid-July - mid-September 2014), early life-stage Fucus vesiculosus were exposed to combined ocean acidification and warming (OAW) in the presence and absence of enhanced nutrient levels (OAW x N experiment). Subsequently, F. vesiculosus germlings were exposed to a final upwelling disturbance during 3 days (mid-September 2014). Experiments were performed in the near-natural scenario "Kiel Outdoor Benthocosms" including natural fluctuations in the southwestern Baltic Sea, Kiel Fjord, Germany (54°27 'N, 10°11 'W). Genetically different sibling groups and different levels of genetic diversity were employed to test to which extent genetic variation would result in response variation. The data presented here show the phenotypical response (growth and survival) of the different experimental populations of F. vesiculosus under OAW, nutrient enrichment and the upwelling event. Log effect ratios demonstrate the responses to enhanced OAW and nutrient concentrations relative to the ambient conditons. Carbon, nitrogen content (% DW) and C:N ratios were measured after the exposure of ambient and high nutrient levels. Abiotic conditions the OAW x nutrient experiment and the upwelling event, are shown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During three Antarctic expeditions (2004, ANT XXI-4 and XXII-2; 2006, ANT XXIII-6) with the German research icebreaker R/V Polarstern, six different amphipod species were recorded under the pack ice of the Weddell Sea and the Lazarev Sea. These cruises covered Austral autumn (April), summer (December) and winter (August) situations, respectively. Five of the amphipod species recorded here belong to the family Eusiridae (Eusirus antarcticus, E. laticarpus, E. microps, E. perdentatus and E. tridentatus), while the last belongs to the Lysianassidea, genus Cheirimedon (cf. femoratus). Sampling was performed by a specially designed under-ice trawl in the Lazarev Sea, whereas in the Weddell Sea sampling was done by scuba divers and deployment of baited traps. In the Weddell Sea, individuals of E. antarcticus and E. tridentatus were repeatedly observed in situ during under-ice dives, and single individuals were even found in the infiltration layer. Also in aquarium observations, individuals of E. antarcticus and E. tridentatus attached themselves readily to sea ice. Feeding experiments on E. antarcticus and E. tridentatus indicated a carnivorous diet. Individuals of the Lysianassoid Cheirimedon were only collected in baited traps there. Repeated conventional zooplankton hauls performed in parallel to this study did not record any of these amphipods from the water column. In the Lazarev Sea, E. microps, E. perdentatus and E. laticarpus were regularly found in under-ice trawls. We discuss the origin and possible sympagic life style of these amphipods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The amount of solar radiation transmitted through Arctic sea ice is determined by the thickness and physical properties of snow and sea ice. Light transmittance is highly variable in space and time since thickness and physical properties of snow and sea ice are highly heterogeneous on variable time and length scales. We present field measurements of under-ice irradiance along transects under undeformed land-fast sea ice at Barrow, Alaska (March, May, and June 2010). The measurements were performed with a spectral radiometer mounted on a floating under-ice sled. The objective was to quantify the spatial variability of light transmittance through snow and sea ice, and to compare this variability along its seasonal evolution. Along with optical measurements, snow depth, sea ice thickness, and freeboard were recorded, and ice cores were analyzed for chlorophyll a and particulate matter. Our results show that snow cover variability prior to onset of snow melt causes as much relative spatial variability of light transmittance as the contrast of ponded and white ice during summer. Both before and after melt onset, measured transmittances fell in a range from one third to three times the mean value. In addition, we found a twentyfold increase of light transmittance as a result of partial snowmelt, showing the seasonal evolution of transmittance through sea ice far exceeds the spatial variability. However, prior melt onset, light transmittance was time invariant and differences in under-ice irradiance were directly related to the spatial variability of the snow cover.