25 resultados para light absorption
em Publishing Network for Geoscientific
Resumo:
Spectra of light absorption by suspended matter, phytoplankton, and detritus in the central and coastal parts of the Black Sea over the spring period (March-April 1995) were determined. Vertical homogeneity of the upper 40 m layer with respect to parameters in study was noted. Value of light absorption by phytoplankton normalized with respect to chlorophyll a was virtually independent of chlorophyll a concentration. A linear relationship between light absorption by phytoplankton and chlorophyll a concentration was established at the red spectral maximum. It is described by the equation y = 0.0153x; R**2 = 0.61. The average ratio of absorption values in the peaks was 2.29. Contribution of detritus to total light absorption at wavelength 440 nm was 23-62% regardless of depth and chlorophyll a concentration.
Resumo:
Spectral absorption coefficients of total particulate matter ap (lambda) were determined using the in vitro filter technique. The present analysis deals with a set of 1166 spectra, determined in various oceanic (case 1) waters, with field chl a concentrations ([chl]) spanning 3 orders of magnitude (0.02-25 mg/m**3). As previously shown [Bricaud et al., 1995, doi:10.1029/95JC00463] for the absorption coefficients of living phytoplankton a phi (lamda), the ap (labda) coefficients also increase nonlinearly with [chl]. The relationships (power laws) that link ap (lambda) and a phi (lambda) to [chl] show striking similarities. Despite large fluctuations, the relative contribution of nonalgal particles to total absorption oscillates around an average value of 25-30% throughout the [chl] range. The spectral dependence of absorption by these nonalgal particles follows an exponential increase toward short wavelengths, with a weakly variable slope (0.011 ± 0.0025/nm). The empirical relationships linking ap (lambda) to ([chl]) can be used in bio-optical models. This parameterization based on in vitro measurements leads to a good agreement with a former modeling of the diffuse attenuation coefficient based on in situ measurements. This agreement is worth noting as independent methods and data sets are compared. It is stressed that for a given ([chl]), the ap (lambda) coefficients show large residual variability around the regression lines (for instance, by a factor of 3 at 440 nm). The consequences of such a variability, when predicting or interpreting the diffuse reflectance of the ocean, are examined, according to whether or not these variations in ap are associated with concomitant variations in particle scattering. In most situations the deviations in ap actually are not compensated by those in particle scattering, so that the amplitude of reflectance is affected by these variations.
Resumo:
1. Shallow arctic lakes and ponds have simple and short food webs, but large uncertainties remain about benthic-pelagic links in these systems. We tested whether organic matter of benthic origin supports zooplankton biomass in a pond in NE Greenland, using stable isotope analysis of carbon and nitrogen in the pond itself and in a 13C-enrichment enclosure experiment. In the latter, we manipulated the carbon isotope signature of benthic algae to enhance its isotopic discrimination from other potential food sources for zooplankton. 2. The cladoceran Daphnia middendorffiana responded to the 13C-enrichment of benthic mats with progressively increasing d13C values, suggesting benthic feeding. Stable isotope analysis also pointed towards a negligible contribution of terrestrial carbon to the diet of D. middendorffiana. This agreed with the apparent dominance of autochthonous dissolved organic matter in the pond revealed by analysis of coloured dissolved organic matter. 3. Daily net production by phytoplankton in the pond (18 mg C/m**2/day) could satisfy only up to half of the calculated minimum energy requirements of D. middendorffiana (35 mg C/m**2/day), whereas benthic primary production alone (145 mg C/m**2/day) was more than sufficient. 4. Our findings highlight benthic primary production as a major dietary source for D. middendorffiana in this system and suggest that benthic organic matter may play a key role in sustaining pelagic secondary production in such nutrient-limited high arctic ponds.
Resumo:
Bio-optical characteristics of phytoplankton have been observed during two-year monitoring in the western Black Sea. High variability in light absorption coefficient of phytoplankton was due to change of pigment concentration and chlorophyll a specific absorption coefficient. A relationships between light absorption coefficients and chlorophyll a concentration have been found: for the blue maximum (a_ph(440) = 0.0413x**0.628; R**2 = 0.63) and for the red maximum (?_ph(678) = 0.0190x**0.843; R**2 = 0.83). Chlorophyll a specific absorption coefficients decreased while pigment concentration in the Sea increased. Observed variability in chlorophyll a specific absorption coefficient at chlorophyll a concentrations <1.0 mg/m**3 had seasonal features and was related with seasonal change of intracellular pigment concentration. Ratio between the blue and red maxima decreased with increasing chlorophyll a concentration (? = 2.14 x**-0.20; R**2 = 0.41). Variability of spectrally averaged absorption coefficient of phytoplankton (a'_ph ) on 95% depended on absorption coefficient at the blue maximum (y = 0.421x; R**2 = 0.95). Relation of a_ph with chlorophyll a concentration was described by a power function (y = 0.0173x**0.0709; R**2 = 0.65). Change of spectra shape was generally effected by seasonal dynamics of intracellular pigment concentration, and partly effected by taxonomic and cell-size structure of phytoplankton.
Resumo:
During summer 2008, as part of the Circumpolar Flaw Lead system study, we measured phytoplankton photosynthetic parameters to understand regional patterns in primary productivity, including the degree and timescale of photoacclimation and how variability in environmental conditions influences this response. Photosynthesis-irradiance measurements were taken at 15 sites primarily from the depth of the subsurface chlorophyll a (Chl a) maximum (SCM) within the Beaufort Sea flaw lead polynya. The physiological response of phytoplankton to a range of light levels was used to assess maximum rates of carbon (C) fixation (P*m), photosynthetic efficiency (alpha*), photoacclimation (Ek), and photoinhibition (beta*). SCM samples taken along a transect from under ice into open water exhibited a >3-fold increase in alpha* and P*m, showing these parameters can vary substantially over relatively small spatial scales, primarily in response to changes in the ambient light field. Algae were able to maintain relatively high rates of C fixation despite low light at the SCM, particularly in the large (>5 µm) size fraction at open water sites. This may substantially impact biogenic C drawdown if species composition shifts in response to future climate change. Our results suggest that phytoplankton in this region are well acclimated to existing environmental conditions, including sea ice cover, low light, and nutrient pulses. Furthermore, this photoacclimatory response can be rapid and keep pace with a developing SCM, as phytoplankton maintain photosynthetic rates and efficiencies in a narrow ''shade-acclimated'' range.