6 resultados para life-cycle perspective

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

abstract to be added by authors

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our objective for this study was to evaluate the influence of preindustrial and expected future atmospheric CO2 concentrations (280 µatm and 700 µatm pCO2, respectively) on different life-cycle stages of the kelp Laminaria hyperborea from Helgoland (Germany, North Sea). Zoospore germination, gametogenesis, vegetative growth, sorus formation and photosynthetic performance of vegetative and fertile tissue were examined. The contribution of external carbonic anhydrase (exCA) to C-supply for net-photosynthesis (net-PS) and the Chla- and phlorotannin content were investigated. Female gametogenesis and vegetative growth of sporophytes were significantly enhanced under the expected future pCO2. rETR(max) and net-PS of young vegetative sporophytes tended to increase performance at higher pCO2. The trend towards elevated net-PS vanished after inhibition of exCA. In vegetative sporophytes, phlorotannin content and Chla content were not significantly affected by pCO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean Acidification (OA) has been shown to affect photosynthesis and calcification in the coccolithophore Emiliania huxleyi, a cosmopolitan calcifier that significantly contributes to the regulation of the biological carbon pumps. Its non-calcifying, haploid life-cycle stage was found to be relatively unaffected by OA with respect to biomass production. Deeper insights into physiological key processes and their dependence on environmental factors are lacking, but are required to understand and possibly estimate the dynamics of carbon cycling in present and future oceans. Therefore, calcifying diploid and non-calcifying haploid cells were acclimated to present and future CO2 partial pressures (pCO2; 38.5 Pa vs. 101.3 Pa CO2) under low and high light (50 vs. 300 µmol photons/m**2 /s). Comparative microarray-based transcriptome profiling was used to screen for the underlying cellular processes and allowed to follow up interpretations derived from physiological data. In the diplont, the observed increases in biomass production under OA are likely caused by stimulated production of glycoconjugates and lipids. The observed lowered calcification under OA can be attributed to impaired signal-transduction and ion-transport. The haplont utilizes distinct genes and metabolic pathways, reflecting the stage-specific usage of certain portions of the genome. With respect to functionality and energy-dependence, however, the transcriptomic OA-responses resemble those of the diplont. In both life-cycle stages, OA affects the cellular redox-state as a master regulator and thereby causes a metabolic shift from oxidative towards reductive pathways, which involves a reconstellation of carbon flux networks within and across compartments. Whereas signal transduction and ion-homeostasis appear equally OA-sensitive under both light intensities, the effects on carbon metabolism and light physiology are clearly modulated by light availability. These interactive effects can be attributed to the influence of OA and light on the redox equilibria of NAD and NADP, which function as major sensors for energization and stress. This generic mode of action of OA may therefore provoke similar cell-physiological responses in other protists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of ocean acidification on the life-cycle stages of the coccolithophore Emiliania huxleyi and their by light were examined. Calcifying diploid and noncalcifying haploid cells (Roscoff culture collection 1216 and 1217) were acclimated to present-day and elevated CO2 partial pressures (PCO2; 38.5 vs. 101.3 Pa, ., 380 vs. 1000 matm) under low and high light (50 vs. 300 mmol photons m-2 s-1). Growth rates as well as quotas and production rates of C and N were measured. Sources of inorganic C for biomass buildup were using a 14C disequilibrium assay. Photosynthetic O2 evolution was measured as a function of dissolved inorganic C and light by means of membrane-inlet mass spectrometry. The diploid stage responded to elevated PCO2 by shunting resources from the production of particulate inorganic C toward organic C yet keeping the production of total particulate C constant. As the effect of ocean acidification was stronger under low light, the diploid stage might be less affected by increased acidity when energy availability is high. The haploid stage maintained elemental composition and production rates under elevated PCO2. Although both life-cycle stages involve different ways of dealing with elevated PCO2, the responses were generally modulated by energy availability, being typically most pronounced under low light. Additionally, PCO2 responses resembled those induced by high irradiances, indicating that ocean acidification affects the interplay between energy-generating processes (photosynthetic light reactions) and processes competing for energy (biomass buildup and calcification). A conceptual model is put forward explaining why the magnitude of single responses is determined by energy availability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.