5 resultados para large truck crash causation study

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sites 1146 and 1148 of Ocean Drilling Program Leg 184, in the South China Sea (SCS), comprise long sediment sections with a time span from the early Oligocene to the Pleistocene. Calcareous nannofossils from these two sites were biostratigraphically studied. We recognized 53 early Oligocene to Pleistocene events that are commonly found in open sea areas and can therefore be correlated within a large geographic range. This study also revealed that a few conventionally used nannofossil events are not suitable for the SCS, and further evaluation is needed. The lower Oligocene to Pleistocene sequences recovered at Sites 1146 and 1148 were subdivided into the 4 Paleogene zones and 21 Neogene to Quaternary zones of Martini, in correlation with the Paleogene to Quaternary zones of Okada and Bukry. This provided a lower Oligocene through Pleistocene nannofossil biostratigraphic framework. A significant unconformity was recognized in the Oligocene-Miocene transition, in which the upper part of Oligocene Zone NP25 and lower part of Miocene Zone NN1 were missing. The time span of the unconformity was estimated to be ~1 m.y. Very high sedimentation rates were seen in the Oligocene, relative low values were seen in the Miocene, and the highest values were seen in the Pleistocene, which was believed to be the result of tectonic and sedimentation history of the SCS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We constructed a high-resolution Mg/Ca record on the planktonic foraminifer Globigerinoides sacculifer in order to explore the change in sea surface temperature (SST) due to the shoaling of the Isthmus of Panama as well as the impact of secondary factors like diagenesis and large salinity fluctuations. The study covers the latest Miocene and the early Pliocene (5.6-3.9 Ma) and was combined with d18O to isolate changes in sea surface salinity (SSS). Before 4.5 Ma, SSTMg/Ca and SSS show moderate fluctuations, indicating a free exchange of surface ocean water masses between the Pacific and the Atlantic. The increase in d18O after 4.5 Ma represents increasing salinities in the Caribbean due to the progressive closure of the Panamanian Gateway. The increase in Mg/Ca toward values of maximum 7 mmol/mol suggests that secondary influences have played a significant role. Evidence of crystalline overgrowths on the foraminiferal tests in correlation with aragonite, Sr/Ca, and productivity cyclicities indicates a diagenetic overprint on the foraminiferal tests. Laser ablation inductively coupled plasma-mass spectrometry analyses, however, do not show significantly increased Mg/Ca ratios in the crystalline overgrowths, and neither do calculations based on pore water data conclusively result in significantly elevated Mg/Ca ratios in the crystalline overgrowths. Alternatively, the elevated Mg/Ca ratios might have been caused by salinity as the d18O record of Site 1000 has been interpreted to represent large fluctuations in SSS, and cultivating experiments have shown an increase in Mg/Ca with increasing salinity. We conclude that the Mg/Ca record <4.5 Ma can only reliably be considered for paleoceanographical purposes when the minimum values, not showing any evidence of secondary influences, are used, resulting in a warming of central Caribbean surface water masses after 4.5 Ma of ~2°C.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Marine dissolved organic matter (DOM) represents one of the largest active carbon reservoirs on Earth. Changes in pool size or composition could have major impacts on the global carbon cycle. Ocean acidification is a potential driver for these changes because it influences marine primary production and heterotrophic respiration. Here we show that ocean acidification as expected for a 'business-as-usual' emission scenario in the year 2100 (900 µatm) does not affect the DOM pool with respect to its size and molecular composition. We applied ultrahigh-resolution mass spectrometry to monitor the production and turnover of 7,360 distinct molecular DOM features in an unprecedented long-term mesocosm study in a Swedish Fjord, covering a full cycle of marine production. DOM concentration and molecular composition did not differ significantly between present-day and year 2100 CO2 levels. Our findings are likely applicable to other coastal and productive marine ecosystems in general.