12 resultados para land use
em Publishing Network for Geoscientific
Resumo:
Detailed data on land use and land cover constitute important information for Earth system models, environmental monitoring and ecosystem services research. Global land cover products are evolving rapidly; however, there is still a lack of information particularly for heterogeneous agricultural landscapes. We censused land use and land cover field by field in the agricultural mosaic catchment Haean in South Korea. We recorded the land cover types with additional information on agricultural practice. In this paper we introduce the data, their collection and the post-processing protocol. Furthermore, because it is important to quantitatively evaluate available land use and land cover products, we compared our data with the MODIS Land Cover Type product (MCD12Q1). During the studied period, a large portion of dry fields was converted to perennial crops. Compared to our data, the forested area was underrepresented and the agricultural area overrepresented in MCD12Q1. In addition, linear landscape elements such as waterbodies were missing in the MODIS product due to its coarse spatial resolution. The data presented here can be useful for earth science and ecosystem services research.
Resumo:
Despite the importance of tropical montane cloud forest streams, studies investigating aquatic communities in these regions are rare and knowledge on the driving factors of community structure is missing. The objectives of this study therefore were to understand how land-use influences habitat structure and macroinvertebrate communities in cloud forest streams of southern Ecuador. We evaluated these relationships in headwater streams with variable land cover, using multivariate statistics to identify relationships between key habitat variables and assemblage structure, and to resolve differences in composition among sites. Results show that shading intensity, substrate type and pH were the environmental parameters most closely related to variation in community composition observed among sites. In addition, macroinvertebrate density and partly diversity was lower in forested sites, possibly because the pH in forested streams lowered to almost 5 during spates. Standard bioindicator metrics were unable to detect the changes in assemblage structure between disturbed and forested streams. In general, our results indicate that tropical montane headwater streams are complex and heterogeneous ecosystems with low invertebrate densities. We also found that some amount of disturbance, i.e. patchy deforestation, can lead at least initially to an increase in macroinvertebrate taxa richness of these streams.
Resumo:
This data set contains the inputs and the results of the REDD+ Policy Assessment Centre project (REDD-PAC) project (http://www.redd-pac.org), developed by a consortium of research institutes (IIASA, INPE, IPEA, UNEP-WCMC), supported by Germany's International Climate Initiative. Taking a new land use map of Brazil for 2000 as input, the research team used the global economic model GLOBIOM to project land use changes in Brazil up to 2050. Model projections show that Brazil has the potential to balance its goals of protecting the environment and becoming a major global producer of food and biofuels. The model results were taken into account by Brazilian decision-makers when developing the country's intended nationally determined contribution (INDC).
Resumo:
GlobCorine demonstrated an automatic service that can generate in a consistent way land cover / land use maps and land change indicators, based on a CLC-compatible legend. CLC is derived from a visual identification and classification of landscape objects using high resolution images. This methodology provides high thematic accuracy but limits the update rate since it is time-consuming. Therefore, the project evaluated the use of MERIS FR time series, processed automatically to provide a more frequent update of CLC-compatible maps. GlobCorine built upon the experience and resources available through the GlobCover project, to tune the classification chain and adapt it to the EEA needs, covering the pan-European area (including the Mediterranean basin and the European Russia), although the system could be potentially extendable globally. The project delivered two CLC-compatible pan-European land cover maps in less than two years, demonstrating efficient and quick production. The first map is based on Envisat MERIS fine resolution (300m) mode data acquired between end 2004 and mid 2006, while the second used full-year 2009 data. GlobCorine is an initiative of ESA with the partnership of EEA and is implemented by Universite' catholique de Louvain - UCL.
Resumo:
Woodland savannahs provide essential ecosystem functions and services to communities. On the African continent, they are widely utilized and converted to intensive land uses. This study investigates the land cover changes of 108,038 km**2 in NE Namibia using multi-temporal, multi-sensor Landsat imagery, at decadal intervals from 1975 to 2014, with a post-classification change detection method and supervised Regression Tree classifiers. We discuss likely impacts of land tenure and reforms over the past four decades on changes in land use and land cover. These changes included losses, gains and exchanges between predominant land cover classes. Exchanges comprised logical conversions between woodland and agricultural classes, implying woodland clearing for arable farming, cropland abandonment and vegetation succession. The most dominant change was a reduction in the area of the woodland class due to the expansion of the agricultural class, specifically, small-scale cereal and pastoral production. Woodland area decreased from 90% of the study area in 1975 to 83% in 2014, while cleared land increased from 9% to 14%. We found that the main land cover changes are conversion from woodland to agricultural and urban land uses, driven by urban expansion and woodland clearing for subsistence-based agriculture and pastoralism.
Resumo:
Geographic information systems allow the extraction and quantitative analysis of information from historical maps. The aims of this research were to examine the completeness of information represented on the 1881 Palestine Exploration Fund (PEF) map, to quantitatively reconstruct the landscape of nineteenth century Palestine and to explore whether spatial patterns in land cover/land use can be partially explained statistically by physical and human factors. Using historical aerial photos, we concluded that most of the major past landscape features were indeed shown on the PEF map, with an average overall correspondence of 53%. Forests and Mediterranean maquis were more abundant at distances greater than 2 km from towns and villages. Specific land cover/land-use types were associated with certain soil types, topographic regions and rainfall thresholds. In conclusion, the 1881 PEF map can serve as a reliable reference for understanding the land cover/land-use patterns of nineteenth century Palestine.
Resumo:
The role of Pre- and Protohistoric anthropogenic land cover changes needs to be quantified i) to establish a baseline for comparison with current human impact on the environment and ii) to separate it from naturally occurring changes in our environment. Results are presented from the simple, adaptation-driven, spatially explicit Global Land Use and technological Evolution Simulator (GLUES) for pre-Bronze age demographic, technological and economic change. Using scaling parameters from the History Database of the Global Environment as well as GLUES-simulated population density and subsistence style, the land requirement for growing crops is estimated. The intrusion of cropland into potentially forested areas is translated into carbon loss due to deforestation with the dynamic global vegetation model VECODE. The land demand in important Prehistoric growth areas - converted from mostly forested areas - led to large-scale regional (country size) deforestation of up to 11% of the potential forest. In total, 29 Gt carbon were lost from global forests between 10 000 BC and 2000 BC and were replaced by crops; this value is consistent with other estimates of Prehistoric deforestation. The generation of realistic (agri-)cultural development trajectories at a regional resolution is a major strength of GLUES. Most of the pre-Bronze age deforestation is simulated in a broad farming belt from Central Europe via India to China. Regional carbon loss is, e.g., 5 Gt in Europe and the Mediterranean, 6 Gt on the Indian subcontinent, 18 Gt in East and Southeast Asia, or 2.3 Gt in subsaharan Africa.
Resumo:
Maps of continental-scale land cover are utilized by a range of diverse users but whilst a range of products exist that describe present and recent land cover in Europe, there are currently no datasets that describe past variations over long time-scales. User groups with an interest in past land cover include the climate modelling community, socio-ecological historians and earth system scientists. Europe is one of the continents with the longest histories of land conversion from forest to farmland, thus understanding land cover change in this area is globally significant. This study applies the pseudobiomization method (PBM) to 982 pollen records from across Europe, taken from the European Pollen Database (EPD) to produce a first synthesis of pan-European land cover change for the period 9000 BP to present, in contiguous 200 year time intervals. The PBM transforms pollen proportions from each site to one of eight land cover classes (LCCs) that are directly comparable to the CORINE land cover classification. The proportion of LCCs represented in each time window provides a spatially aggregated record of land cover change for temperate and northern Europe, and for a series of case study regions (western France, the western Alps, and the Czech Republic and Slovakia). At the European scale, the impact of Neolithic food producing economies appear to be detectable from 6000 BP through reduction in broad-leaf forests resulting from human land use activities such as forest clearance. Total forest cover at a pan-European scale moved outside the range of previous background variability from 4000 BP onwards. From 2200 BP land cover change intensified, and the broad pattern of land cover for preindustrial Europe was established by 1000 BP. Recognizing the timing of anthropogenic land cover change in Europe will further the understanding of land cover-climate interactions, and the origins of the modern cultural landscape.
Resumo:
This study projects land cover probabilities under climate change for corn (maize), soybeans, spring and winter wheat, winter wheat-soybean double cropping, cotton, grassland and forest across 16 central U.S. states at a high spatial resolution, while also taking into account the influence of soil characteristics and topography. The scenarios span three oceanic-atmospheric global circulation models, three Representative Concentration Pathways, and three time periods (2040, 2070, 2100). As climate change intensifies, the suitable area for all six crops display large northward shifts. Total suitable area for spring wheat, followed by corn and soybeans, diminish. Suitable area for winter wheat and for winter wheat-soybean double-cropping expand northward, while cotton suitability migrates to new, more northerly, locations. Suitability for forest intensifies in the south while yielding to crops in the north; grassland intensifies in the western Great Plains as crop suitability diminishes. To maintain current broad geographic patterns of land use, large changes in the thermal response of crops such as corn would be required. A transition from corn-soybean to winter wheat-soybean doubling cropping is an alternative adaptation.
Resumo:
In addition to enhance agricultural productivity, synthetic nitrogen (N) and phosphorous (P) fertilizer application in croplands dramatically altered global nutrient budget, water quality, greenhouse gas balance, and their feedbacks to the climate system. However, due to the lack of geospatial fertilizer input data, current Earth system/land surface modeling studies have to ignore or use over-simplified data (e.g., static, spatially uniform fertilizer use) to characterize agricultural N and P input over decadal or century-long period. We therefore develop a global time-series gridded data of annual synthetic N and P fertilizer use rate in croplands, matched with HYDE 3,2 historical land use maps, at a resolution of 0.5º latitude by longitude during 1900-2013. Our data indicate N and P fertilizer use rates increased by approximately 8 times and 3 times, respectively, since the year 1961, when IFA (International Fertilizer Industry Association) and FAO (Food and Agricultural Organization) survey of country-level fertilizer input were available. Considering cropland expansion, increase of total fertilizer consumption amount is even larger. Hotspots of agricultural N fertilizer use shifted from the U.S. and Western Europe in the 1960s to East Asia in the early 21st century. P fertilizer input show the similar pattern with additional hotspot in Brazil. We find a global increase of fertilizer N/P ratio by 0.8 g N/g P per decade (p< 0.05) during 1961-2013, which may have important global implication of human impacts on agroecosystem functions in the long run. Our data can serve as one of critical input drivers for regional and global assessment on agricultural productivity, crop yield, agriculture-derived greenhouse gas balance, global nutrient budget, land-to-aquatic nutrient loss, and ecosystem feedback to the climate system.