8 resultados para laboratory tests

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hydraulic piston coring device (HPC-15) allows recovery of deep ocean sediments with minimal disturbance. The device was used during Leg 72 of the Deep Sea Drilling Project (DSDP) aboard the Glomar Challenger. Core samples were recovered from bore holes in the Rio Grande Rise in the southwest Atlantic Ocean. Relatively undisturbed sediment cores were obtained from Holes 515A, 516, 517, and 518. The results of shipboard physical property measurements and on-shore geotechnical laboratory tests on these cores are presented in this chapter. A limited number of 0.3 m cores were obtained and used in a series of geotechnical tests, including one-dimensional consolidation, direct shear, Atterburg limit, particle size analysis, and specific gravity tests. Throughout the testing program, attention was focused on assessment of sample disturbance associated with the HPC-15 coring device. The HPC-15 device limits sample disturbance reasonably well in terrigenous muds (clays). However, sample disturbance associated with coring calcareous sediments (nannofossil-foraminifer oozes) is severe. The noncohesive, granular behavior of the calcareous sediments is vulnerable to severe disturbance, because of the design of the sampling head on the device at the time of Leg 72. A number of modifications to the sampling head design are recommended and discussed in this chapter. The modifications will improve sample quality for testing purposes and provide longer unbroken core samples by reducing friction between the sediment column and the sampling tool.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

From laboratory tests under simulated downhole conditions we tentatively conclude that the higher the triaxial-compressive strength, the lower the drilling rate of basalts from DSDP Hole 504B. Because strength is roughly proportional to Young's modulus of elasticity, which is related in turn to seismic-wave velocities, one may be able to estimate drilling rates from routine shipboard measurements. However, further research is needed to verify that P-wave velocity is a generally useful predictor of relative drilling rate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mechanical behavior of the plate boundary fault zone is of paramount importance in subduction zones, because it controls megathrust earthquake nucleation and propagation as well as the structural style of the forearc. In the Nankai area along the NanTroSEIZE (Kumano) drilling transect offshore SW Japan, a heterogeneous sedimentary sequence overlying the oceanic crust enters the subduction zone. In order to predict how variations in lithology, and thus mechanical properties, affect the formation and evolution of the plate boundary fault, we conducted laboratory tests measuring the shear strengths of sediments approaching the trench covering each major lithological sedimentary unit. We observe that shear strength increases nonlinearly with depth, such that the (apparent) coefficient of friction decreases. In combination with a critical taper analysis, the results imply that the plate boundary position is located on the main frontal thrust. Further landward, the plate boundary is expected to step down into progressively lower stratigraphic units, assisted by moderately elevated pore pressures. As seismogenic depths are approached, the décollement may further step down to lower volcaniclastic or pelagic strata but this requires specific overpressure conditions. High-taper angle and elevated strengths in the toe region may be local features restricted to the Kumano transect.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Woodlark Basin, an area of continental extension, is an ideal location to study the evolution of permeability and the development of overpressures within an active rift basin. In this investigation, we measured sediment permeabilities of cores from Woodlark Basin and used numerical modeling to determine if pore fluid overpressures are likely at the base of the rift basin. Constant-rate flow tests were conducted on cores from Site 1108, located in the rift basin, and Sites 1115 and 1118, located on the northern margin of the basin. Results of the laboratory tests indicated permeabilities that range from 1.5 x 10**-18 to 1 x 10**-16 m**2. Results of the numerical modeling of Site 1108 suggest that overpressures due to sedimentation are unlikely.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increased atmospheric CO2 concentration is leading to changes in the carbonate chemistry and the temperature of the ocean. The impact of these processes on marine organisms will depend on their ability to cope with those changes, particularly the maintenance of calcium carbonate structures. Both a laboratory experiment (long-term exposure to decreased pH and increased temperature) and collections of individuals from natural environments characterized by low pH levels (individuals from intertidal pools and around a CO2 seep) were here coupled to comprehensively study the impact of near-future conditions of pH and temperature on the mechanical properties of the skeleton of the euechinoid sea urchin Paracentrotus lividus. To assess skeletal mechanical properties, we characterized the fracture force, Young's modulus, second moment of area, material nanohardness, and specific Young's modulus of sea urchin test plates. None of these parameters were significantly affected by low pH and/or increased temperature in the laboratory experiment and by low pH only in the individuals chronically exposed to lowered pH from the CO2 seeps. In tidal pools, the fracture force was higher and the Young's modulus lower in ambital plates of individuals from the rock pool characterized by the largest pH variations but also a dominance of calcifying algae, which might explain some of the variation. Thus, decreases of pH to levels expected for 2100 did not directly alter the mechanical properties of the test of P. lividus. Since the maintenance of test integrity is a question of survival for sea urchins and since weakened tests would increase the sea urchins' risk of predation, our findings indicate that the decreasing seawater pH and increasing seawater temperature expected for the end of the century should not represent an immediate threat to sea urchins vulnerability

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Culturing experiments were performed with the benthic foraminifer Ammonia aomoriensis from Flensburg Fjord, western Baltic Sea. The experiments simulated a projected rise in atmospheric CO2 concentrations. We exposed specimens to 5 seawater pCO2 levels ranging from 618 µatm (pH 7.9) to 3130 µatm (pH 7.2) for 6 wk. Growth rates and mortality differed significantly among pCO2 treatments. The highest increase of mean test diameter (19%) was observed at 618 µatm. At partial pressures >1829 µatm, the mean test diameter was observed to decrease, by up to 22% at 3130 µatm. At pCO2 levels of 618 and 751 µatm, A. aomoriensis tests were found intact after the experiment. The outer chambers of specimens incubated at 929 and 1829 µatm were severely damaged by corrosion. Visual inspection of specimens incubated at 3130 µatm revealed wall dissolution of all outer chambers, only their inner organic lining stayed intact. Our results demonstrate that pCO2 values of >=929 µatm in Baltic Sea waters cause reduced growth of A. aomoriensis and lead to shell dissolution. The bottom waters in Flensburg Fjord and adjacent areas regularly experience pCO2 levels in this range during summer and fall. Increasing atmospheric CO2 concentrations are likely to extend and intensify these periods of undersaturation. This may eventually slow down calcification in A. aomoriensis to the extent that net carbonate precipitation terminates. The possible disappearance of this species from the Baltic Sea and other areas prone to seasonal undersaturation would likely cause significant shifts in shallow-water benthic ecosystems in the near future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the effects of elevated pCO2 in seawater both on the acute mortality and the reproductive properties of the benthic copepod Tigriopus japonicus and gastropod Babylonia japonica with the purpose of accumulating basic data for assessing potential environmental impacts of sub-sea geological storage of anthropogenic CO2 in Japan. Acute tests showed that nauplii of T. japonicus have a high tolerance to elevated pCO2 environments. Full life cycle tests on T. japonicus indicated NOEC = 5800 µatm and LOEC = 37,000 µatm. Adult B. japonica showed remarkable resistance to elevated pCO2 in the acute tests. Embryonic development of B. japonica showed a NOEC = 1500 µatm and LOEC = 5400 µatm. T. japonicus showed high resistance to elevated pCO2 throughout the life cycle and B. japonica are rather sensitive during the veliger stage when they started to form their shells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification will likely have negative impacts on invertebrates producing skeletons composed of calcium carbonate. Skeletal solubility is partly controlled by the incorporation of "foreign" ions (e.g. magnesium) into the crystal lattice of these skeletal structures, a process that is sensitive to a variety of biological and environmental factors. Here we explore effects of life stage, oceanographic region of origin, and changes in the partial pressure of carbon dioxide in seawater (pCO2) on trace elemental composition in the purple sea urchin (Strongylocentrotus purpuratus). We show that, similar to other urchin taxa, adult purple sea urchins have the ability to precipitate skeleton composed of a range of biominerals spanning low- to high-Mg calcites. Mg / Ca and Sr / Ca ratios were substantially lower in adult spines compared to adult tests. On the other hand, trace elemental composition was invariant among adults collected from four oceanographically distinct regions spanning a range of carbonate chemistry conditions (Oregon, Northern California, Central California, and Southern California). Skeletons of newly settled juvenile urchins that originated from adults from the four regions exhibited intermediate Mg / Ca and Sr / Ca between adult spine and test endmembers, indicating that skeleton precipitated during early life stages is more soluble than adult spines and less soluble than adult tests. Mean skeletal Mg / Ca or Sr / Ca of juvenile skeleton did not vary with source region when larvae were reared under present-day, global-average seawater carbonate conditions (400 µatm; pHT = 8.02 ± 0.03 1 SD; Omega calcite = 3.3 ± 0.2 1 SD). However, when reared under elevated pCO2 (900 µatm; pHT = 7.73 ± 0.03; Omega calcite = 1.8 ± 0.1), skeletal Sr / Ca in juveniles exhibited increased variance across the four regions. Although larvae from the northern populations (Oregon, Northern California, Central California) did not exhibit differences in Mg or Sr incorporation under elevated pCO2 (Sr / Ca = 2.10 ± 0.06 mmol/mol; Mg / Ca = 67.4 ± 3.9 mmol/mol), juveniles of Southern California origin partitioned ~8% more Sr into their skeletons when exposed to higher pCO2 (Sr / Ca = 2.26 ± 0.08 vs. 2.09 ± 0.005 mmol/mol 1 SD). Together these results suggest that the diversity of carbonate minerologies present across different skeletal structures and life stages in purple sea urchins does not translate into an equivalent geochemical plasticity of response associated with geographic variation or temporal shifts in seawater properties. Rather, composition of S. purpuratus skeleton precipitated during both early and adult life history stages appears relatively robust to spatial gradients and predicted future changes in carbonate chemistry. An exception to this trend may arise during early life stages, where certain populations of purple sea urchins may alter skeletal mineral precipitation rates and composition beyond a given pCO2 threshold. This potential for geochemical plasticity during early development in contrast to adult stage geochemical resilience adds to the growing body of evidence that ocean acidification can have differing effects across organismal life stages.