4 resultados para lab experiment

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Predicting the impacts of environmental change on marine organisms, food webs, and biogeochemical cycles presently relies almost exclusively on short-term physiological studies, while the possibility of adaptive evolution is often ignored. Here, we assess adaptive evolution in the coccolithophore Emiliania huxleyi, a well-established model species in biological oceanography, in response to ocean acidification. We previously demonstrated that this globally important marine phytoplankton species adapts within 500 generations to elevated CO2. After 750 and 1000 generations, no further fitness increase occurred, and we observed phenotypic convergence between replicate populations. We then exposed adapted populations to two novel environments to investigate whether or not the underlying basis for high CO2-adaptation involves functional genetic divergence, assuming that different novel mutations become apparent via divergent pleiotropic effects. The novel environment "high light" did not reveal such genetic divergence whereas growth in a low-salinity environment revealed strong pleiotropic effects in high CO2 adapted populations, indicating divergent genetic bases for adaptation to high CO2. This suggests that pleiotropy plays an important role in adaptation of natural E. huxleyi populations to ocean acidification. Our study highlights the potential mutual benefits for oceanography and evolutionary biology of using ecologically important marine phytoplankton for microbial evolution experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapidity of ocean acidification intensifies selection pressure for resilient phenotypes, particularly during sensitive early life stages. The scope for selection is greater in species with greater within-species variation in responses to changing environments, thus enhancing the potential for adaptation. We investigated among-male variation in sperm swimming responses (percent motility and swimming speeds) of the serpulid polychaete Galeolaria caespitosa to near- (delta pH 0.3) and far-future ocean acidification (delta pH 0.5). Responses of sperm swimming to acidification varied significantly among males and were overall negative. Robust sperm swimming behavior under near-future ocean acidification in some males may ameliorate climate change impacts, if traits associated with robustness are heritable, and thereby enhance the potential for adaptation to far-future conditions. Reduced sperm swimming in the majority of male G. caespitosa may decrease their fertilization success in a high CO2 future ocean. Resultant changes in offspring production could affect recruitment success and population fitness downstream.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Climate change will lead to intense selection on many organisms, particularly during susceptible early life stages. To date, most studies on the likely biotic effects of climate change have focused on the mean responses of pooled groups of animals. Consequently, the extent to which inter-individual variation mediates different selection responses has not been tested. Investigating this variation is important, since some individuals may be preadapted to future climate scenarios. Methodology/Principal Findings: We examined the effect of CO2-induced pH changes ("ocean acidification") in sperm swimming behaviour on the fertilization success of the Australasian sea urchin Heliocidaris erythrogramma, focusing on the responses of separate individuals and pairs. Acidification significantly decreased the proportion of motile sperm but had no effect on sperm swimming speed. Subsequent fertilization experiments showed strong inter-individual variation in responses to ocean acidification, ranging from a 44% decrease to a 14% increase in fertilization success. This was partly explained by the significant relationship between decreases in percent sperm motility and fertilization success at delta pH = 0.3, but not at delta pH = 0.5. Conclusions and Significance: The effects of ocean acidification on reproductive success varied markedly between individuals. Our results suggest that some individuals will exhibit enhanced fertilization success in acidified oceans, supporting the concept of 'winners' and 'losers' of climate change at an individual level. If these differences are heritable it is likely that ocean acidification will lead to selection against susceptible phenotypes as well as to rapid fixation of alleles that allow reproduction under more acidic conditions. This selection may ameliorate the biotic effects of climate change if taxa have sufficient extant genetic variation upon which selection can act.