300 resultados para isotopic change rate
em Publishing Network for Geoscientific
Resumo:
We present a revised calibration of Sr isotopes to the geomagnetic polarity timescale (GPTS) using closely spaced (~0.15 m.y. resolution) samples from the classic uppermost Eocene through lowermost Miocene section at Site 522, eastern South Atlantic. The Sr isotopic data are fit with two linear segments with a sharp change in slope at circa 27.5 Ma from 0.000038/m.y. (27.5 to 34.4 Ma) to 0.000051/m.y. (23.8 to 27.5 Ma). Regression analysis indicates that stratigraphic resolution ranges from ±1 m.y. (for one analysis) to ±0.6 m.y. (for three analyses) for the younger interval and ±1.2 m.y. (for one analysis) to ±0.7 m.y. (for three analyses) for the older interval, representing an increase in resolution from previous studies of ±1-2 m.y. The paleoceanographic significance of this change in slope is unclear. It occurs during an interval of intermittent Antarctic glaciation, between the Oi2a and Oi2b glaciations. The subsequent interval from circa 27 to 24 Ma appears to be an interval of minimal glaciation. Thus this observation does not support previous suggestions that increases in rates of Sr isotopic change are directly associated with the frequency of Antarctic glaciations. Rather, the increase in slope may be related to increased weathering associated with the "mid-Oligocene" glaciation.
Resumo:
Profiles of Mo/total organic carbon (TOC) through the Lower Toarcian black shales of the Cleveland Basin, Yorkshire, United Kingdom, and the Posidonia shale of Germany and Switzerland reveal water mass restriction during the interval from late tenuicostatum Zone times to early bifrons Zone times, times which include that of the putative Early Toarcian oceanic anoxic event. The degree of restriction is revealed by crossplots of Mo and TOC concentrations for the Cleveland Basin, which define two linear arrays with regression slopes (ppm/%) of 0.5 and 17. The slope of 0.5 applies to sediment from the upper semicelatum and exaratum Subzones. This value, which is one tenth of that for modern sediments from the Black Sea (Mo/TOC regression slope 4.5), reveals that water mass restriction during this interval was around 10 times more severe than in the modern Black Sea; the renewal frequency of the water mass was between 4 and 40 ka. The Mo/TOC regression slope of 17 applies to the overlying falciferum and commune subzones: the value shows that restriction in this interval was less severe and that the renewal frequency of the water mass was between 10 and 130 years. The more restricted of the two intervals has been termed the Early Toarcian oceanic anoxic event but is shown to be an event caused by basin restriction local to NW Europe. Crossplots of Re, Os, and Mo against TOC show similar trends of increasing element concentration with increase in TOC but with differing slopes. Together with modeling of 187Os/188Os and d98Mo, the element/TOC trends show that drawdown of Re, Os, and Mo was essentially complete during upper semicelatum and exaratum Subzone times (Mo/TOC regression slope of 0.5). Drawdown sensitized the restricted water mass to isotopic change forced by freshwater mixing so that continental inputs of Re, Os, and Mo, via a low-salinity surface layer, created isotopic excursions of up to 1.3 per mil in d98Mo and up to 0.6 per mil for 187Os/188Os. Restriction thereby compromises attempts to date Toarcian black shales, and possibly all black shales, using Re-Os chronology and introduces a confounding influence in the attempts to use d98Mo and initial 187Os/188Os for palaeo-oceanographic interpretation.
Resumo:
The Lesser Antilles arc is a particularly interesting island arc because it is presently very active, it is located perpendicular to the South American continent and its chemical and isotopic compositions display a strong north-south gradient. While the presence in the south of a thick pile of sedimentary material coming from the old South American continent has long been suspected to explain the geochemical gradient, previous studies failed to demonstrate unambiguously a direct link between the arc lava compositions and the subducted sediment compositions. Here, we present new Nd, Sm, Th, U and Pb concentrations and Nd-Pb isotopic data for over 60 sediments from three sites located in the fore arc region of the Lesser Antilles arc. New data for DSDP Site 543 drill core located east of Dominica Island complement the data published by White et al. (1985, doi:10.1016/0016-7037(85)90082-1) and confirm their relatively uniform isotopic compositions (i.e., 206Pb/204Pb between 19.13 and 19.53). In contrast, data obtained on DSDP Site 144 located further south, on the edge of the South American Rise and on sediments from Barbados Island are much more variable (206Pb/204Pb ranges from 18.81 to 27.69). The very radiogenic Pb isotopic compositions are found in a 60 m thick black shale unit, which has no age equivalent in the Site 543 drill core. We interpret the peculiar composition of the southern sediments as being due to two factors, (a) the proximity of the South American craton, which contributes coarse grain old detrital material that does not travel far from the continental shelf, and (b) the presence of older sediments including the thick black shale unit formed during Oceanic Anoxic events 2 and 3. The north-south isotopic change known along the Lesser Antilles arc can be explained by the observed geographical changes in the composition of the subducted sediments. About 1% contamination of the mantle wedge by Site 543 sediments explains the composition of the northern islands while up to 10% sediments like those of Site 144 is required in the source of the southern island lavas. The presence of black shales in the subducted pile provides a satisfactory explanation for the very low Delta8/4 values that characterize the Lesser Antilles arc.
Resumo:
Siwalik paleosol and Bengal Fan sediment samples were analyzed for the abundance and isotopic composition of n-alkanes in order to test for molecular evidence of the expansion of C4 grasslands on the Indian subcontinent. The carbon isotopic compositions of high-molecular-weight alkanes in both the ancient soils and sediments record a shift from low d13C values (ca. -30 per mil) to higher values (ca. -22 per mil) prior to 6 Ma. This shift is similar in magnitude to that recorded by paleosol carbonate and fossil teeth, and is consistent with a relatively rapid transition from dominantly C3 vegetation to an ecosystem dominated by C4 plants typical of semi-arid grasslands. The n-alkane values from our paleosol samples indicate that the isotopic change began as early as 9 Ma, reflecting either a growing contribution of C4 plants to a dominantly C3 biomass or a decrease in water availability to C3 plants. Molecular and isotopic analyses of other compounds, including n-alcohols and low-molecular weight n-alkanes indicate paleosol organic matter contains contributions from a mixture of sources, including vascular plants, algae and/or cyanobacteria and microorganisms. A range of inputs is likewise reflected in the isotopic composition of the total organic carbon from these samples. In addition, the n-alkanes from two samples show little evidence for pedegenic inputs and we suggest the compounds were derived instead from the paleosol's parent materials. We suggest the record of vegetation in ancient terrestrial ecosystems is better reconstructed using isotopic signatures of molecular markers, rather than bulk organic carbon. This approach provides a means of expanding the spatial and temporal records of C4 plant biomass which will help to resolve possible tectonic, climatic or biological controls on the rise of this important component of the terrestrial biosphere.
Resumo:
Pliocene changes in the vertical water mass structure of the western South Atlantic are inferred from changes in benthic foraminiferal assemblages and stable isotopes from DSDP Holes 516A, 517, and 518. Factor analysis of 34 samples from Site 518 reveals three distinct benthic foraminiferal assemblages that have been associated with specific subsurface water masses in the modern ocean. These include a Nuttalides umbonifera assemblage (Factor 1) associated with Antarctic Bottom Water (AABW), a Globocassidulina subglobosa-Uvigerina peregrina assemblage (Factor 2) associated with Circumpolar Deep Water (CPDW), and an Oridorsalis umbonatus-Epistominella exigua assemblage associated with North Atlantic Deep Water (NADW). Bathymetric gradients in d13C between Holes 516A (1313 m), 517 (2963 m), and 518 (3944 m) are calculated whenever possible to monitor the degree of similarity and/or difference in the apparent oxygen utilization (AOU) of water masses located at these depths during the Pliocene. Changes in bathymetric d13C gradients coupled with benthic foraminiferal assemblages record fundamental changes in the vertical water mass structure of the Vema Channel during the Pliocene from 4.1 to 2.7 Ma. At Site 518, the interval from 4.1 to 3.6 Ma is dominated by the N. umbonifera (Factor 1) and O. umbonatus-E. exigua (Factor 3) assemblages. The d13C gradient between Holes 518 (3944 m) and 516A (1313 m) undergoes rapid oscillations during this interval though no permanent increase in the gradient is observed. However, d13C values at Site 518 are clearly lighter during this interval. These conditions may be related to increased bottom water activity associated with the re-establishment of the West Antarctic Ice Sheet in the late Gilbert Chron (-4.2 to 3.6 Ma) (Osborn et al., 1982). The interval from 3.6 to 3.2 Ma is marked by a dominance of the G. subglobosa-U. peregrina (Factor 2) assemblage and lack of a strong d13C gradient between Holes 518 (3944 m) and 516A (1313 m). We suggest that shallow circumpolar waters expanded to depths of a least 3944 m (Site 518) during this time. The most profound faunal and isotopic change occurs at 3.2 Ma, and is marked by dominance of the N. umbonifera (Factor 1) and O. umbonatus-E. exigua (Factor 3) assemblages, a 1.1 per mil enrichment in d18O, and a large negative increase in the d13C gradient between Holes 518 and 516A. These changes at Site 518 record the vertical displacement of circumpolar waters by AABW and NADW. This change in vertical water mass structure at 3.2 Ma was probably related to a global cooling event and/or final closure of the Central American seaway. A comparison of the present-day d13C structure of the Vema Channel with a reconstruction between 3.2 and 2.7 Ma indicates that circulation patterns during this late Pliocene interval were similar to those of the modern western South Atlantic.
Resumo:
During the late Pleistocene, sapropels (layers of organic-carbon rich sediment) formed throughout the entire Eastern Mediterranean Basin in close association with glacial/interglacial transitions. The current theory for the mechanism of sapropel formation involves a density stratification of the water column, due to the invasion of a large quantity of low-saline water, which resulted in oxygen depletion of the bottom waters. Most workers believe that this low-salinity water was glacial meltwater that entered the Mediterranean via the Black Sea and a series of interconnected glacial lakes, but the suggestion also has been made that the freshwater originated from the Nile River. In this study the oxygen isotope values of planktonic foraminifera,Globigerinoides ruber, have been examined in six gravity cores and one piston core from the southern Levantine Basin, and compared with the oxygen isotope records ofG. ruber from other areas of the Eastern Mediterranean. This study deals mainly with the latest sapropel which was deposited approximately 7000 to 9000 years ago. Results indicate that Nile discharge probably does reduce salinities somewhat in the immediate area surrounding the mouth of the Nile, but this water is rapidly mixed with the highly saline waters of the easternmost Mediterranean. Using a mixing equation and surface water salinity limitations, an approximate oxygen isotope balance of surface waters was calculated for the time of latest sapropel deposition. This calculation shows that neither Nile River discharge nor Black Sea input (nor both together) are large enough to account for the large-scale oxygen isotope depletion associated with latest sapropel deposition in the Eastern Mediterranean. This suggests that part of the isotopic change at Termination I is probably due to increased surface water salinities during the last glacial maximum. In addition, evidence from the timing of sapropel 1 deposition and the dissolved oxygen balance indicates that deposition of the latest sapropel is associated with increased surface water production of biogenic material, as much as three times higher than that of present day.
Resumo:
Regional/global-scale information on coastline rates of change and trends is extremely valuable, but national-scale studies are scarce. A widely accepted standardized methodology for analysing long-term coastline change has been difficult to achieve, but is essential to conduct an integrated and holistic approach to coastline evolution and hence support coastal management actions. Additionally, databases providing knowledge on coastline evolution are of key importance to support both coastal management experts and users. The main objective of this work is to present the first systematic, global and consistent long-term coastline evolution data of Portuguese mainland low-lying sandy. The methodology used quantifies coastline evolution using an unique and robust coastline indicator (the foredune toe), which is independent of short-term changes. The dataset presented comprises: 1) two polyline sets, mapping the 1958 and 2010 sandy beach-dune systems coastline, both optimized for working at 1:50 000 scale or smaller, and 2) one polyline set representing long-term change rates between 1958 and 2010, estimated at each 250 m. Results show beach erosion as the dominant trend, with a mean change rate of -0.24 ± 0.01 m/year for all mainland Portuguese beach-dune systems. Although erosion is dominant, this evolution is variable in signal and magnitude in different coastal sediment cell and also within each cell. The most relevant beach erosion issues were found in the coastal stretches of Espinho - Torreira and Costa Nova - Praia da Mira, both at sub-cell 1b; Cova Gala - Leirosa, at sub-cell 1c and Cova do Vapor - Costa da Caparica, at cell 4. Cells 1 and 4 exhibit a history of major human interventions interfering with the coastal system, many of which originated and maintained a sediment deficit. In contrast, cells 5 and 6 have been less intervened and show stable or moderate accretion behaviour.
Resumo:
Two haptophyte algae, Emiliania huxleyi and Gephyrocapsa oceanica, were cultured at different temperatures and salinities to investigate the impact of these factors on the hydrogen isotopic composition of long chain alkenones synthesized by these algae. Results showed that alkenones synthesized by G. oceanica were on average depleted in D by 30 compared to those of E. huxleyi when grown under similar temperature and salinity conditions. The fractionation factor, alpha alkenones-H2O, ranged from 0.760 to 0.815 for E. huxleyi and from 0.741 to 0.788 for G. oceanica. There was no significant correlation of alpha alkenones-H2O with temperature but a positive linear correlation was observed between alpha alkenones-H2O and salinity with ~3 change in fractionation per salinity unit and a negative correlation between alpha alkenones-H2O and growth rate. This suggests that both salinity and growth rate can have a substantial impact on the stable hydrogen isotopic composition of long chain alkenones in natural environments.
Resumo:
A down-core 231Pa/230Th record has been measured from the southwestern Indian Ocean to reconstruct the history of deep water flow into this basin over the last glacial-interglacial cycle. The (231Paxs/230Thxs)0 ratio throughout the record is nearly constant at approximately 0.055, significantly lower than the production ratio of 0.093, indicating that the proxy is sensitive to changes in circulation and/or sediment flux at this site. The consistent value suggests that there has been no change in the inflow of Antarctic Bottom Water to the Indian Ocean during the last 140 ka, in contrast to the changes in deep circulation thought to occur in other ocean basins. The stability of the (231Paxs/230Thxs)0 value in the record contrasts with an existing sortable silt (SS) record from the same core. The observed equation image variability is attributed to a local geostrophic effect amplifying small changes in circulation. A record of authigenic U from the same core suggests that there was reduced oxygen in bottom waters at the core locality during glacial periods. The consistency of the (231Paxs/230Thxs)0 record implies that this could not have arisen by local changes in productivity, thus suggesting a far-field control: either globally reduced bottom water oxygenation or increased productivity south of the Opal Belt during glacials.
Resumo:
The oceanographic and tectonic conditions of accretionary margins are well-suited for several potential processes governing methane generation, storage and release. To identify the relevant methane evolution pathways in the northern Cascadia accretionary margin, a four-site transect was drilled during Integrated Ocean Drilling Program Expedition 311. The d13C values of methane range from a minimum value of -82.2 per mil on an uplifted ridge of accreted sediment near the deformation front (Site U1326, 1829 mbsl, meters below sea level) to a maximum value of -39.5 per mil at the most landward location within an area of steep canyons near the shelf edge (Site U1329, 946 mbsl). An interpretation based solely on methane isotope values might conclude the 13C-enrichment of methane indicates a transition from microbially- to thermogenically-sourced methane. However, the co-existing CO2 exhibits a similar trend of 13C-enrichment along the transect with values ranging from -22.5 per mil to +25.7 per mil. The magnitude of the carbon isotope separation between methane and CO2 (Ec = 63.8 ± 5.8) is consistent with isotope fractionation during microbially mediated carbonate reduction. These results, in conjunction with a transect-wide gaseous hydrocarbon content composed of > 99.8% (by volume) methane and uniform dDCH4 values (-172 per mil ± 8) that are distinct from thermogenic methane at a seep located 60 km from the Expedition 311 transect, suggest microbial CO2 reduction is the predominant methane source at all investigated sites. The magnitude of the intra-site downhole 13C-enrichment of CO2 within the accreted ridge (Site U1326) and a slope basin nearest the deformation front (Site U1325, 2195 mbsl) is ~ 5 per mil. At the mid-slope site (Site U1327, 1304 mbsl) the downhole 13C-enrichment of the CO2 is ~ 25 per mil and increases to ~ 40 per mil at the near-shelf edge Site U1329. This isotope fractionation pattern is indicative of more extensive diagenetic alteration at sites with greater 13C-enrichment. The magnitude of the 13C-enrichment of CO2 correlates with decreasing sedimentation rates and a diminishing occurrence of stratigraphic gas hydrate. We suggest the decreasing sedimentation rates increase the exposure time of sedimentary organic matter to aerobic and anaerobic degradation, during burial, thereby reducing the availability of metabolizable organic matter available for methane production. This process is reflected in the occurrence and distribution of gas hydrate within the northern Cascadia margin accretionary prism. Our observations are relevant for evaluating methane production and the occurrence of stratigraphic gas hydrate within other convergent margins.
Resumo:
High-resolution records of the nitrogen isotopic composition of organic matter (d15Norg), opal content, and opal accumulation rates from the central Gulf of California reveal large and abrupt variations during deglaciation and gradual Holocene changes coincident with climatic changes recorded in the North Atlantic. Homogenous sediments with relatively low d15Norg values and low opal content were deposited at the end of the last glacial period, during the Younger-Dryas event, and during the middle to late Holocene. In contrast, laminated sediments deposited in the two deglacial stages are characterized by very high d15Norg values (>14 per mil) and opal accumulation rates (29-41 mg/cm**2/yr). Abrupt shifts in d15Norg were driven by widespread changes in the extent of suboxic subsurface waters supporting denitrification and were amplified in the central gulf record due to variations in upwelling, vertical mixing, and/or the latitudinal position of the Intertropical Convergence Zone.
Resumo:
A detailed study of strontium isotope variations in Neogene marine carbonate sediments from Deep Sea Drilling Project Site 590B, using techniques that allow the 87Sr/86Sr ratio to be determined to better than +/-0.00001, gives a high-resolution record of the Sr isotopic evolution of seawater. The data show that the rate of change of the marine 87Sr/86Sr ratio has varied significantly even on time scales as short as 1 m.y. Periods of particularly rapid growth appear to follow major marine regressions and probably reflect an increase in the delivery of radiogenic Sr from the continents coupled with a decreased submarine carbonate dissolution rate (greater carbonate compensation depth). Periods of relatively slowly changing 87Sr/86Sr follow major marine transgressions. On the basis of correlations with the marine oxygen isotope record and the times of major continental glacier growth, it is inferred that the effects of sea-level variations are modified by climatic factors that affect the intensity of continental weathering and runoff. The effects of sea-floor generation rate variations are not discernible for the Neogene. The maximum attainable stratigraphic resolution using Sr isotopes is between 0.1 and 2 m.y. for this time period.
Resumo:
New Pb, Sr, and Nd isotope data are presented for 64 samples from the six backarc sites drilled during Leg 135. Systematic changes in Pb and Sr compositions illustrate significant isotopic variations between and within sites as well as provide two key pieces of information. First, a recent influx of asthenosphere with Indian Ocean mantle affinities has occurred and has successfully displaced older "Pacific" asthenosphere from the mantle underlying the backarc region. Second, clear evidence exists for mixing between these two asthenospheric end-members and at least one "arc-like" component. The latter was not the same as most material currently erupting in the Tofua Arc, but it must have had a more radiogenic Pb-isotope signature, perhaps similar to rocks analyzed from the islands of Tafahi, and Niuatoputapu. A comparison between the isotopic variations and the tectonic setting of the drill sites reveals consistent and important information regarding the mantle dynamics beneath the evolving backarc basin. We propose a model in which the source of upwelling magmas changes from Pacific to Indian Ocean asthenosphere with the propagation of seafloor spreading, a model with important implications for the rate of mantle influx into this region. Although the chemistries of backarc magmas have been profoundly influenced by this process, an additional consequence is the advection of Indian Ocean asthenosphere into the sub-arc mantle source. The isotopic compositions of arc rocks from the vicinity have been reevaluated on the basis of the proposed mantle advection model. We suggest that the slab-derived flux of trace elements into the arc wedge has remained relatively uniform with time (i.e., ~40 Ma), so that the change in arc chemistry results from mantle source substitution, rather than from differences in the composition of the downgoing plate.
Resumo:
We present initial isotopic ratios of lead for Early Cretaceous (Barremian-Aptian) sections from Shatsky Rise (Pacific) and Gorgo a Cerbara (Italy). Our Pb isotopic data track an interval representing Oceanic Anoxic Event (OAE)-1a, which is characterized by quasi-global deposition of organic carbon-rich black shale. Pb isotopic compositions of sediments from Shatsky Rise decrease at the end of Barremian time, from radiogenic continental values to unradiogenic values, and subsequently remained less radiogenic until the end of early Aptian time. We explain the isotopic shift by a significant increase in supply rate of unradiogenic Pb, most likely due to massive volcanism. In contrast, the Pb isotopic compositions from the Italian section, which was situated at the western end of Tethys, are mostly identical to those of upper continental crust, showing no significant change in supply rate of unradiogenic Pb. The discrepancy between two sites is attributed to quiescent deep-submarine eruptions of Pacific large igneous provinces (LIPs) such as the Ontong Java Plateau (OJP), which severely limited dispersion of Pb-carrying particles out of the Pacific Ocean. Published Os isotopic data from the Italian section indicate two episodes of massive eruptions of OJP or contemporaneous Manihiki and Hikurangi plateaus starting from earliest Aptian time, slightly later than that indicated by the sedimentary Pb isotopic record from Shatsky Rise. Differences in isotopic variations between Pb and Os likely reflect differences in their chemical behaviors in the oceans, i.e., Pb isotopic compositions would have varied in response to local or regional changes in sediment provenances, whereas large-scale changes in Os inputs are required to explain variations in seawater Os isotopic compositions. Our Pb isotopic data, together with the published Os isotopic record, provide new evidence for the eruptive history of OJP together with contemporaneous Pacific plateaus and its environmental consequences, starting from end-Barremian time and extending through early Aptian time.
Resumo:
Centennial-to-millennial scale records from IODP Site U1387, drilled during IODP Expedition 339 into the Faro Drift at 558 m water depth, now allow evaluating the climatic history of the upper core of the Mediterranean Outflow (MOW) and of the surface waters in the northern Gulf of Cadiz during the early Pleistocene. This study focuses on the period from Marine Isotope Stage (MIS) 29 to 34, i.e. the interval surrounding extreme interglacial MIS 31. Conditions in the upper MOW reflect obliquity, precession and millennial-scale variations. The benthic d18O signal follows obliquity with the exception of an additional, smaller d18O peak that marks the MIS 32/31 transition. Insolation maxima (precession minima) led to poor ventilation and a sluggish upper MOW core, whereas insolation minima were associated with enhanced ventilation and often also increased bottom current velocity. Millennial-scale periods of colder sea-surface temperatures (SST) were associated with short-term maxima in flow velocity and better ventilation, reminiscent of conditions known from MIS 3. A prominent contourite layer, coinciding with insolation cycle 100, was formed during MIS 31 and represents one of the few contourites developing within an interglacial period. MIS 31 surface water conditions were characterized by an extended period (1065-1091 ka) of warm SST, but SST were not much warmer than during MIS 33. Interglacial to glacial transitions experienced 2 to 3 stadial/interstadial cycles, just like their mid-to-late Pleistocene counterparts. Glacial MIS 30 and 32 recorded periods of extremely cold (< 12°C) SST that in their climatic impact were comparable to the Heinrich events of the mid and late Pleistocene. Glacial MIS 34, on the other hand, was a relative warm glacial period off southern Portugal. Overall, surface water and MOW conditions at Site U1387 show strong congruence with Mediterranean climate, whereas millennial-scale variations are closely linked to North Atlantic circulation changes.