4 resultados para isolated transition metal ions
em Publishing Network for Geoscientific
Resumo:
Electron microprobe and X-ray diffraction data for north Pacific manganese nodules reveal that the transition metal distributions are controlled by the mineralogy. Microlayers rich in 10Å-manganates generally have high Mn/Fe ratios and positive correlations between Ni, Cu and Mn, and between Co and Fe. Microlayers rich in vernadite, on the other hand, show low Mn/Fe ratios, and Co, Ni and Cu all show positive correlations with Mn. The 10Å-manganates form mainly in porewaters with high Mn/Fe ratios. The Ni2+ and Cu2+ ions are post-depositionally incorporated into the interlayers of the manganates, whereas Co3+ is substituted for Fe3+ in ferric oxyhydroxides. In seawater with a low Mn/Fe ratio, on the other hand, the adsorption of positively charged ferric oxyhydroxides on negatively charged [MnO6] octahedral layers suppresses the growth of 10Å-manganates, enhancing the formation of vernadite. Positively charged hydroxides of Co3+, Ni2+ and Cu2+ are also adsorbed on the [MnO6] layers. These mechanisms of mineral formation and metal uptake are corroborated by data for other oceanic non-hydrothermal manganese nodules and crusts.