677 resultados para iron oxide soil

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fifteen iron oxide accumulations from the bottoms of two Finnish lakes ("lake ores") were found to contain as much as 50% Fe. Differential X-ray powder diffraction and selective dissolution by oxalate showed that the samples consisted of poorly crystallized goethite and ferrihydrite. The crust ores of one lake had higher ferrihydrite to goethite ratios than the nodular ores of the other lake. The higher ferrihydrite proportion was attributed to a higher rate of Fe2+ supply from the ground water and/or a higher rate of oxidation as a function of water depth and bottom-sediment permeability. Values of Al-for-Fe substitution of the goethites determined from unit-cell dimensions agreed with those obtained from chemical extraction if the unit-cell volume rather than the c dimension was used. In very small goethite crystals a slight expansion of the a unit-cell dimension is probaby compensated by a corresponding contraction of the c dimension, so that a contraction of the c dimension need not necessarily be caused by Al substitution. The goethites of the two lakes differed significantly in their Al-for-Fe substitutions and hence in their unit-cell sizes, OH-bending characteristics, dehydroxylation temperatures, dissolution kinetics, and Mössbauer parameters. The difference in Al substitution (0 vs. 7 mole %) is attributed to the Al-supplying power of the bottom sediments: the silty-clayey sediments in one lake appear to have supplied A1 during goethite formation, whereas the gravelly-sandy sediments in the other lake did not. The compositions of the goethites thus reflect their environments of formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The AND-1B drill core recovered a 13.57 million year Miocene through Pleistocene record from beneath the McMurdo Ice Shelf in Antarctica (77.9°S, 167.1°E). Varying sedimentary facies in the 1285 m core indicate glacial-interglacial cyclicity with the proximity of ice at the site ranging from grounding of ice in 917 m of water to ice free marine conditions. Broader interpretation of climatic conditions of the wider Ross Sea Embayment is deduced from provenance studies. Here we present an analysis of the iron oxide assemblages in the AND-1B core and interpret their variability with respect to wider paleoclimatic conditions. The core is naturally divided into an upper and lower succession by an expanded 170 m thick volcanic interval between 590 and 760 m. Above 590 m the Plio-Pleistocene glacial cycles are diatom rich and below 760 m late Miocene glacial cycles are terrigenous. Electron microscopy and rock magnetic parameters confirm the subdivision with biogenic silica diluting the terrigenous input (fine pseudo-single domain and stable single domain titanomagnetite from the McMurdo Volcanic Group with a variety of textures and compositions) above 590 m. Below 760 m, the Miocene section consists of coarse-grained ilmenite and multidomain magnetite derived from Transantarctic Mountain lithologies. This may reflect ice flow patterns and the absence of McMurdo Volcanic Group volcanic centers or indicate that volcanic centers had not yet grown to a significant size. The combined rock magnetic and electron microscopy signatures of magnetic minerals serve as provenance tracers in both ice proximal and distal sedimentary units, aiding in the study of ice sheet extent and dynamics, and the identification of ice rafted debris sources and dispersal patterns in the Ross Sea sector of Antarctica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vast areas on the Tibetan Plateau are covered by alpine sedge mats consisting of different species of the genus Kobresia. These mats have topsoil horizons rich in rhizogenic organic matter which creates turfs. As the turfs have recently been affected by a complex destruction process, knowledge concerning their soil properties, age and pedogenesis are needed. In the core area of Kobresia pygmaea mats around Nagqu (central Tibetan Plateau, ca. 4500 m a.s.l.), four profiles were subjected to pedological, paleobotanical and geochronological analyses concentrating on soil properties, phytogenic composition and dating of the turf. The turf of both dry K. pygmaea sites and wet Kobresia schoenoides sites is characterised by an enrichment of living (dominant portion) and dead root biomass. In terms of humus forms, K. pygmaea turfs can be classified as Rhizomulls mainly developed from Cambisols. Wet-site K. schoenoides turfs, however, can be classified as Rhizo-Hydromors developed from Histic Gleysols. At the dry sites studied, the turnover of soil organic matter is controlled by a non-permafrost cold thermal regime. Below-ground remains from sedges are the most frequent macroremains in the turf. Only a few pollen types of vascular plants occur, predominantly originating from sedges and grasses. Large amounts of microscopic charcoal (indeterminate) are present. Macroremains and pollen extracted from the turfs predominantly have negative AMS 14C ages, giving evidence of a modern turf genesis. Bulk-soil datings from the lowermost part of the turfs have a Late Holocene age comprising the last ca. 2000 years. The development of K. pygmaea turfs was most probably caused by an anthropo(zoo)-genetically initiated growth of sedge mats replacing former grass-dominated vegetation ('steppe'). Thus the turfs result from the transformation of pre-existing topsoils comprising a secondary penetration and accumulation of roots. K. schoenoides turfs, however, are characterised by a combined process of peat formation and penetration/accumulation of roots probably representing a (quasi) natural wetland vegetation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gravelly clay loamy and clayey soils developed from the derivatives of ultramafic rocks of the dunite-harzburgite complex of the Rai-Iz massif in the Polar Urals have been studied. They are represented by raw-humus pelozems (weakly developed clayey soils) under conditions of perfect drainage on steep slopes and by the gleyzems (Gleysols) with vivid gley color patterns in the eluvial positions on leveled elements of the relief. The magnesium released from the silicates with the high content of this element (mainly from olivine) specifies the neutral-alkaline reaction in these soils. Cryoturbation, the accumulation of raw humus, the impregnation of the soil mass with humic substances, gleyzation, and the ferrugination of the gleyed horizons are also clearly pronounced in the studied soils. Despite the high pH values, the destruction of supergene smectites in the upper horizons and ferrugination (the accumulation of iron hydroxides) in the microfissures dissecting the grains of olivine, pyroxene, and serpentine, and in decomposing plant tissues take place. The development of these processes may be related to the local acidification (neutralization) of the soil medium under the impact of biota and carbonic acids. The specificity of gleyzation in the soils developing from ultra-mafic rocks is shown in the absence of iron depletion from the fine earth material against the background of the greenish blue gley color pattern.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visual traces of iron reduction and oxidation are linked to the redox status of soils and have been used to characterise the quality of agricultural soils.We tested whether this feature could also be used to explain the spatial pattern of the natural vegetation of tidal habitats. If so, an easy assessment of the effect of rising sea level on tidal ecosystems would be possible. Our study was conducted at the salt marshes of the northern lagoon of Venice, which are strongly threatened by erosion and rising sea level and are part of the world heritage 'Venice and its lagoon'. We analysed the abundance of plant species at 255 sampling points along a land-sea gradient. In addition, we surveyed the redox morphology (presence/absence of red iron oxide mottles in the greyish topsoil horizons) of the soils and the presence of disturbances. We used indicator species analysis, correlation trees and multivariate regression trees to analyse relations between soil properties and plant species distribution. Plant species with known sensitivity to anaerobic conditions (e.g. Halimione portulacoides) were identified as indicators for oxic soils (showing iron oxide mottles within a greyish soil matrix). Plant species that tolerate a low redox potential (e.g. Spartina maritima) were identified as indicators for anoxic soils (greyish matrix without oxide mottles). Correlation trees and multivariate regression trees indicate the dominant role of the redox morphology of the soils in plant species distribution. In addition, the distance from the mainland and the presence of disturbances were identified as tree-splitting variables. The small-scale variation of oxygen availability plays a key role for the biodiversity of salt marsh ecosystems. Our results suggest that the redox morphology of salt marsh soils indicates the plant availability of oxygen. Thus, the consideration of this indicator may enable an understanding of the heterogeneity of biological processes in oxygen-limited systems and may be a sensitive and easy-to-use tool to assess human impacts on salt marsh ecosystems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Iron-manganese concretions, closely related to lacustrine ores and deep sea manganese nodules, are presently forming in different parts of Gulfs of Bothnia and Finland. They can be divided according to physical form into three distinct groups: (1) round pea-shaped concretions, (2) ring-shaped concrections, and (3) flat sheets and crusts of concretionary material. A definite correlation was found to exist between the form i.e. type of concretions and their chemical composition (Mn/Fe ratio). Trace element concentrations were generally rather high, although not as high as in deep sea manganese nodules. X-ray and DTA was used to study the mineralogy and crystal structure of the concretions. Surface concentrations and geographical distribution of the concretions were estimated on the basis of samples, diving observations and echo-grams.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recycling of oceanic crust into the deep mantle via subduction is a widely accepted mechanism for creating compositional heterogeneity in the upper mantle and for explaining the distinct geochemistry of mantle plumes. The oxygen isotope ratios (d18O) of some ocean island basalts (OIB) span values both above and below that of unmetasomatised upper mantle (5.5 ± 0.4 per mil) and provide support for this hypothesis, as it is widely assumed that most variations in d18O are produced by near-surface low-temperature processes. Here we show a significant linear relationship between d18O and stable iron isotope ratios (d57Fe) in a suite of pristine eclogite xenoliths. The d18O values of both bulk samples and garnets range from values within error of normal mantle to significantly lighter values. The observed range and correlation between d18O and d57Fe is unlikely to be inherited from oceanic crust, as d57Fe values determined for samples of hydrothermally altered oceanic crust do not differ significantly from the mantle value and show no correlation with d18O. It is proposed that the correlated d57Fe and d18O variations in this particular eclogite suite are predominantly related to isotopic fractionation by disequilibrium partial melting although modification by melt percolation processes cannot be ruled out. Fractionation of Fe and O isotopes by removal of partial melt enriched in isotopically heavy Fe and O is supported by negative correlations between bulk sample d57Fe and Cr content and bulk sample and garnet d18O and Sc contents, as Cr and Sc are elements that become enriched in garnet- and pyroxene-bearing melt residues. Melt extraction could take place either during subduction, where the eclogites represent the residues of melted oceanic lithosphere, or could take place during long-term residence within the lithospheric mantle, in which case the protoliths of the eclogites could be of either crustal or mantle origin. This modification of both d57Fe and d18O by melting processes and specifically the production of low-d18O signatures in mafic rocks implies that some of the isotopically light d18O values observed in OIB and eclogite xenoliths may not necessarily reflect near-surface processes or components.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In-situ Fe isotope measurements have been carried out to estimate the impact of the hydrothermal metamorphic overprint on the Fe isotopic composition of Fe-Ti-oxides and Fe-sulfides of the different lithologies of the drilled rocks from IODP Hole 1256D (eastern equatorial Pacific; 15 Ma crust formed at the East Pacific Rise). Most igneous rocks normally have a very restricted range in their 56Fe/54Fe ratio. In contrast, Fe isotope compositions of hot fluids (> 300 °C) from mid-ocean-ridge spreading centers define a narrow range that is shifted to lower delta 56Fe values by 0.2 per mil - 0.5 per mil as compared to igneous rocks. Therefore, it is expected that mineral phases that contain large amounts of Fe are especially affected by the interaction with a fluid that fractionates Fe isotopes during exsolution/precipitation of those minerals. We have used a femtosecond UV-Laser ablation system to determine mineral 56Fe/54Fe ratios of selected samples with a precision of < 0.1 per mil (2 sigma level) at micrometer-scale. We have found significant variations of the delta 56Fe (IRMM-014) values in the minerals between different samples as well as within samples and mineral grains. The overall observed scale of delta 56Fe (magnetite) in 1256D rocks ranges from - 0.12 to + 0.64 per mil, and of delta 56Fe (ilmenite) from - 0.77 to + 0.01 per mil. Pyrite in the lowermost sheeted dike section is clearly distinguishable from the other investigated lithological units, having positive delta 56Fe values between + 0.29 and + 0.56 per mil, whereas pyrite in the other samples has generally negative delta 56Fe values from - 1.10 to - 0.59 permil. One key observation is that the temperature dependent inter-mineral fractionations of Fe isotopes between magnetite and ilmenite are systematically shifted towards higher values when compared to theoretically expected values, while synthesized, well equilibrated magnetite-ilmenite pairs are compatible with the theoretical predictions. Theoretical considerations including beta-factors of different aqueous Fe-chlorides and Rayleigh-type fractionations in the presence of a hydrous, chlorine-bearing fluid can explain this observation. The disagreement between observed and theoretical equilibrium fractionation, the fact that magnetite, in contrast to ilmenite shows a slight downhole trend in the delta 56Fe values, and the observation of small scale heterogeneities within single mineral grains imply that a general re-equilibration of the magnetite-ilmenite pairs is overprinted by kinetic fractionation effects, caused by the interaction of magnetite/ilmenite with hydrothermal fluids penetrating the upper oceanic crust during cooling, or incomplete re-equilibration at low temperatures. Furthermore, the observation of significant small-scale variations in the 56Fe/54Fe ratios of single minerals in this study highlights the importance of high spatial-resolution-analyses of stable isotope ratios for further investigations.